
Christian Gerth
LN

CS
 7

84
9

Change Management

Business Process
Models

 123

Lecture Notes in Computer Science 7849
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Christian Gerth

Business Process
Models
Change Management

13

Author

Christian Gerth
University of Paderborn, Department of Computer Science
Research Group Database and Information Systems
Zukunftsmeile 1, 33102 Paderborn, Germany,
E-mail: gerth@uni-paderborn.de

This monograph constitutes a revised version of the author’s doctoral dissertation,
which was submitted to the University of Paderborn, Faculty of Electrical Engineer-
ing, Computer Science and Mathematics, Department of Computer Science, War-
burger Straße 100, 33098 Paderborn, Germany, under the original title "Change
Management for Business Process Models", and which was accepted in July 2012.

The image on the front cover was created by Inga Gerth in 2013. It shows the main
activities in Business-Driven Development (BDD) [Mitra, 2005, Koehler et al., 2008],
which is a software engineering methodology with a strong focus on a close alignment
of business and IT requirements.

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-38603-9 e-ISBN 978-3-642-38604-6
DOI 10.1007/978-3-642-38604-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013938612

CR Subject Classification (1998): H.4-5, H.3.3-5, J.1, D.2, K.6.3, C.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To my wife, Inga,
my children, Frieda, Laurens & Martha,

and my parents, Gudrun & Peter.

Foreword

Procedures and processes determine our daily lives. Every day, we come across reg-
ularly repeating sequences in which we, e.g., organize our household, do our job, or
are active in sports in our spare time. Depending on the process and goal, we prepare
breakfast, handle customer requests, produce products, or attend the gym’s personal
training. These activities are always guided by a number of rules that are either pre-
defined or have evolved over time. When cooking, we call these rules “recipes,” at
work they are called “instructions,” and in the gym they are called “training pro-
grams.” On the level of enterprises, we are talking about business process models.

Also in software engineering, business process models are leveraged for the de-
velopment of software systems. For instance, the tasks that should be performed by
a software system are specified in terms of process models, in order to understand
them more precisely and to ensure that they are implemented correctly. Models of
business processes are created when the processes of a company are determined in
discussion with a client and are mapped onto a process model. These business pro-
cess models constitute key business and process knowledge and provide a significant
added value for the company. As a consequence, from a business perspective it is
important to specify process models precisely and to maintain as well as improve
them continuously, to ensure their sustainable usability in the company. In the busi-
ness world, we speak in this context of change management for business process
models.

In our modern working world with its global engagement and complex software
systems, this task is typically performed by teams of people in distributed work en-
vironments. Thereby, several different versions of a process model may be created
owing to individual modifications applied by different people. During an improve-
ment step of a process model, these different versions may temporarily exist in paral-
lel. However, after the completion of the step, the different versions must be merged
into a unique and improved reference process model version. For this purpose, dif-
ferences, dependencies, and conflicts between the different process models must be
detected and resolved in the merged process model. This well-known problem in
the field of software configuration management is largely solved for textual docu-
ments and appropriate tools support the development of software systems in daily

VIII Foreword

business. In the case of (graphical) models and in particular for process models,
previously no adequate solution existed.

Christian Gerth uniquely addresses this problem of change management for busi-
ness process models in his dissertation. In order to support the merging of process
models that can be modeled in different languages, he first developed a normalized
representation for process models. This language-independent intermediate repre-
sentation specifies process models at a higher level of abstraction. On the interme-
diate representation, Mr. Gerth defined change operations for process models and
described differences between process models using these operations.

For the detection of change operations, he developed a method that is also ca-
pable of detecting composite changes, i.e., sequences of operations, which can be
traced back to atomic change operations. The set of change operations detected be-
tween two process model versions describe the differences between these versions,
and can directly be used to merge them. In the next step, Christian Gerth evaluated
whether dependencies in the set of change operations between process model ver-
sions are present and developed a method for their automated detection. For that
purpose, he used techniques from the theory of parallel graph transformations and
transferred them to his task. Subsequently, he examined what types of conflicts can
arise in a team-oriented, i.e., parallel development of process models and how these
conflicts can be discovered and resolved during the merging of different process
model versions. To this extent, he compared process models semantically and used
the obtained results to identify syntactically different but semantically equivalent
process models. Also here, Mr. Gerth developed a novel solution by transferring ex-
isting theoretical results, in this case from the area of term rewriting systems, to his
problem at hand and applied them with a new focus.

The results achieved by Mr. Gerth are not only of a high scientific value, but also
of great practical, industry-relevant value. This fact is demonstrated impressively
by the very successful collaboration with IBM Research - Zurich (CH), which led,
among other things, to four patent applications, and the contribution of major parts
of the work to the Compare & Merge framework for the “IBM WebSphere Business
Modeler” (Version 7.0), which was released as an IBM product. The main findings
of the dissertation have been published in conference proceedings of high-ranking
scientific conferences and for their high quality received a “Best Paper Award”
twice.

Overall, Christian Gerth has shown with his dissertation and its contained sci-
entific results an above average excellence. He has worked on the largely unsolved
problem of change management for business process models comprehensively as
well as completely and has developed a sophisticated, practically usable solution.
He described his solution in a very clear and easy to understand structure, which
consists of a series of partial solutions that build on each other. He has shown that
he has a broad knowledge in the practical and formal modeling world and is able to
use existing (theoretical) results for his work. Mr. Gerth has proven with his disser-
tation that he can advance the scientific field of software engineering originally.

Gregor Engels

Acknowledgments

My dissertation and this resulting book were developed and written at the University
of Paderborn in the Database and Information Systems research group of Prof. Dr.
Gregor Engels in cooperation with the IBM Research - Zurich laboratory.

Although only my name is on the front cover of this dissertation, a great many
people supported me in this venture. I would like to thank the following people for
sharing their experience, time, and patience.

I owe my deepest gratitude to my advisor, Prof. Dr. Gregor Engels, who is a
great source of inspiration. Gregor, I really appreciate the prosperous environment
you offered me by giving me the freedom to explore on my own and at the same time
providing guidance when I was lost. I would like to express my gratitude to Prof.
Dr. Gerti Kappel and Prof. Dr. Wilhelm Schäfer for examining my dissertation as
reviewers. Further, I thank Prof. Dr. Leena Suhl, Dr. Jochen Küster, and Dr. Theodor
Lettmann for being members of my doctoral committee.

I am heartily thankful to my industrial supervisor Dr. Jochen Küster from IBM
Research - Zurich. Jochen, I thank you for your encouragement in teaching me how
to work scientifically. I am really grateful for your endless practical advice and
our chats on and off the topic. I am also thankful to all members of the Business
Integration Technologies group for making my time with IBM Research in Zurich
so pleasant and successful. I thank my manager Dr. Jana Koehler for her continual
support and her valuable feedback.

I thank all my current and past colleagues from the Database and Information
Systems research group for providing such an excellent professional and friendly
atmosphere in our research group. In particular, I am grateful to my friend and
colleague Markus Luckey for his effort in our joint research sessions and in co-
authoring papers with me. Markus, I thank you for helping me to overcome setbacks
and to stay sane in the course of writing this book. I thank Christian Soltenborn for
our numerous discussions on various projects and I am glad that we share the same
sense of humor. Further, I would like to acknowledge my tabletop soccer team: Jan-
Christopher Bals, Fabian Christ, Markus Luckey, Benjamin Nagel, Yavuz Sancar,
and Henning Wachsmuth. Thank you guys for letting me win from time to time.

X Acknowledgments

Apart from my scientific and professional environment, it would have been next
to impossible to write this book without the support of my family. I thank my parents
for their unconditional love, for giving me the opportunity to study, and for making
me believe that I can achieve anything I want.

The greatest thanks go to my wife and my three kids. Frieda, Laurens, and
Martha, thank you for showing me that there are “even” more important things than
a dissertation. Most important, I would like to thank my wife, Inga, for standing all
my moods during the course of this work and for putting things into perspective —
you let the sun shine in me!

Finally, I appreciate the financial support from the International Graduate School
of Dynamic Intelligent Systems at the University of Paderborn that funded parts of
the research discussed in this book.

Abstract

In recent years, the role of process models in the development of enterprise soft-
ware systems has increased continuously. Today, process models are used at differ-
ent levels in the development process. For instance, in service-oriented architectures
(SOA), high-level business process models become input for the development of IT
systems, and in running IT systems executable process models describe choreogra-
phies of Web services. A key driver behind this development is the necessity for a
closer alignment of business and IT requirements, to reduce the reaction times in
software development to frequent changes in competitive markets.

Typically in these scenarios, process models are developed, maintained, and
transformed in a team environment by several stakeholders that are often from dif-
ferent business units, resulting in different versions. To obtain integrated process
models comprising the changes applied to different versions, the versions need to be
consolidated by means of model change management. Change management for pro-
cess models can be compared to widely used concurrent versioning systems (CVS)
and consists of the following major activities: matching of process models, detec-
tion of differences, computation of dependencies and conflicts between differences,
and merging of process models.

Although in general model-driven development (MDD) is accepted as a well-
established development approach, there are still some shortcomings that let devel-
opers decide against MDD and opt for more traditional development paradigms.
These shortcomings comprise a lack of fully integrated and fully featured develop-
ment environments for MDD, such as a comprehensive support for model change
management.

In this book, we present a framework for process model change management.
The framework is based on an intermediate representation for process models that
serves as an abstraction of specific process modeling languages and focuses on com-
mon syntactic and semantic core concepts for the modeling of workflow in process
models. On the basis of the intermediate representation, we match process models
in versioning scenarios and compute differences between process models generi-
cally. Further, we consider the analysis of dependencies between differences and

XII Abstract

show how conflicts between differences can be computed by taking into account the
semantics of the modeling language.

As proof-of-concept, we have implemented major parts of this framework in
terms of a prototype. The detection of differences and dependencies contributed also
to the Compare & Merge framework for the IBM WebSphere Business Modeler V
7.01 (WBM), which was released as a product in fall 2009.

1 http://www.ibm.com/software/integration/wbimodeler/entry/

http://www.ibm.com/software/integration/wbimodeler/entry/

Contents

1 Introduction . 1
1.1 Motivation and Problem Statement . 1
1.2 Solution Overview and Research Contribution 5
1.3 Publication Overview . 10
1.4 Structure of the Book . 12

2 Background . 13
2.1 Models in Software Engineering . 13
2.2 Business Process Modeling . 14

2.2.1 Overview of Business Process Modeling Languages 15
2.2.2 BPMN in Detail . 17
2.2.3 Semantics of Process Models . 22

2.3 Business Processes in Model-Based Development 24
2.4 State of the Art in Model Versioning . 25

2.4.1 Classification of Model Versioning . 26
2.4.2 Overview of Existing Approaches . 29
2.4.3 Evaluation . 32

2.5 Summary and Discussion . 34

3 Intermediate Representation . 35
3.1 Options for an Intermediate Representation . 35
3.2 Requirements for an Essential Intermediate Representation 36
3.3 Intermediate Representation for Business Process Models 39

3.3.1 Syntax of the IR . 39
3.3.2 Semantics of the IR . 41

3.4 Decomposition into Fragments . 45
3.5 Abstraction of BPMN to the Intermediate Representation 47
3.6 Summary and Discussion . 50

XIV Contents

4 Matching . 51
4.1 Requirements for Process Model Matching . 51
4.2 Evaluation of Existing Matching Approaches for Process Model

Matching . 53
4.2.1 Identity-Based Matching Approaches 53
4.2.2 Similarity-Based Matching Approaches 53
4.2.3 Summary . 54

4.3 Data Structure for Model Matching . 55
4.4 Matching in Versioning Scenarios . 57

4.4.1 Overview . 57
4.4.2 Computation of Partial Mappings . 59
4.4.3 Completion of the Partial Mappings . 61
4.4.4 Derivation of the MappingM(V1,V2) 63

4.5 Summary and Discussion . 64

5 Difference Representation . 65
5.1 Requirements for Difference Representation 65
5.2 Difference Representation Based on Elementary Change

Operations . 67
5.2.1 Elementary Change Operations . 67
5.2.2 Completeness of Elementary Change Operations 70
5.2.3 An Example of an Elementary Difference Model 72
5.2.4 Discussion . 74

5.3 Difference Representation Based on Compound Change
Operations . 75
5.3.1 Compound Change Operations . 75
5.3.2 Completeness of Compound Change Operations 82
5.3.3 A Change Log with Compound Change Operations 83
5.3.4 Discussion . 83

5.4 Summary and Discussion . 85

6 Difference Detection . 87
6.1 Requirements for Difference Detection . 88
6.2 Approach to Difference Detection . 90

6.2.1 Approach Overview . 91
6.2.2 Step 1: Detection of Inserted Model Elements 92
6.2.3 Step 2: Detection of Deleted Model Elements 93
6.2.4 Step 3: Detection of Moved Model Elements 93
6.2.5 Step 4: Detection of Converted Fragments 97
6.2.6 Summary . 98

6.3 Hierarchical Change Log . 100
6.4 Position Parameters of Compound Change Operations 103
6.5 Summary and Discussion . 105

Contents XV

7 Dependency Analysis . 107
7.1 Requirements for Dependency Analysis . 107
7.2 Transformation Dependent Compound Change Operations 109

7.2.1 Approach Overview . 109
7.2.2 Compound Change Operations and Model

Transformation Rules . 110
7.2.3 Formalization of Compound Change Operation Types 112
7.2.4 Transformation Dependencies . 114
7.2.5 Discussion . 116

7.3 J-PST Dependent Compound Change Operations 118
7.3.1 Dynamic Specification . 119
7.3.2 J-PST Dependencies . 122
7.3.3 Discussion . 128

7.4 Summary and Discussion . 128

8 Equivalence Analysis . 131
8.1 The Notion of Equivalence . 131

8.1.1 Existing Approaches to Equivalence Analysis of
Process Models . 132

8.1.2 Overview of Our Approach . 134
8.2 Process Model Terms . 135
8.3 Term Rewriting System for Process Model Terms. 137

8.3.1 Term Rewriting System . 137
8.3.2 Functional Behavior . 143
8.3.3 Equivalence of Process Models and Fragments 144

8.4 Detection of Semantically Equivalent Fragments 145
8.5 Summary and Discussion . 146

9 Conflict Analysis . 149
9.1 Conflicts between Change Operations . 149
9.2 Types of Conflicts . 152

9.2.1 Syntactic Conflicts . 153
9.2.2 Semantic Conflicts . 155

9.3 Method for Precise Conflict Detection . 156
9.3.1 Conflict Detection of Independent Change Operations 157
9.3.2 Conflict Detection of Dependent Change Operations 160

9.4 Summary and Discussion . 164

10 Process Model Merging . 165
10.1 Merging Overview . 165
10.2 Translation of IR Compound Change Operations into

Language-Specific Compound Change Operations 166
10.3 Applying Non-conflicting Compound Change Operations 168

10.3.1 Iterative Application of Change Operations 168
10.3.2 Automatic Application of Change Operations 170

XVI Contents

10.4 Applying Conflicting Compound Change Operations 171
10.4.1 Strategies for Conflict Resolution . 172
10.4.2 Method for Conflict Resolution . 172

10.5 Summary and Discussion . 174

11 Tool Support . 177
11.1 Implementation Platform . 177
11.2 Overview of the Process Merging Solution . 178

11.2.1 Architectural Overview . 179
11.2.2 Reconstruction of a Hierarchical Change Log 181
11.2.3 Merging of Process Models . 182
11.2.4 Compare and Merge Framework of the IBM WebSphere

Business Modeler . 186
11.3 Summary and Discussion . 186

12 Conclusion . 189
12.1 Contribution Summary . 189
12.2 Outlook on Future Work . 193
12.3 Final Remarks . 194

References . 197

A Evaluation Case Study . 207
A.1 Scenario of the Case Study . 207
A.2 Difference and Conflict Resolution Using Compound Change

Operations . 211
A.3 Difference and Conflict Resolution Using Elementary Change

Operations . 212
A.4 Summary and Discussion . 213

B Dependency and Conflict Matrices . 215
B.1 Dependency and Conflict Matrices for Compound Change

Operations . 215

1

Introduction

In this chapter, we give a detailed motivation for the work presented in this book and
point out our research goals and contributions. At the end of the chapter, we give a
structural overview of the book.

1.1 Motivation and Problem Statement

Business Process Management (BPM) is a management approach that comprises
the creation, development, maintenance, and optimization of business processes in
enterprises and institutions. A business process is a collection of ordered tasks that
need to be carried out to achieve a certain business goal, such as the production
of a product or a service delivery. Tasks within a business process may represent
activities that are performed manually by a human or automatically by an IT system.
The focus of BPM is the automation and optimization of business processes as well
as the support of human interaction with the use of information technologies.

BPM consists of different phases, such as analysis, design, implementation, de-
ployment, monitoring, and evaluation [Dumas et al., 2005]. In the analysis and de-
sign phases, a business case is analyzed and a desired solution is modeled. Then, the
solution is implemented and executed in an existing environment (implementation
and deployment phase). The running solution is controlled in the monitor phase and
the solution is adapted for continuous improvement during the evaluation phase.

In BPM, business processes of an enterprise are represented in terms of pro-
cess models capturing the business logic that shall be automated. A process model
comprises a set of activities connected by edges that determine the order in which
the activities are performed. Process models can be specified visually or textually.
Figure 1.1 shows a visual process model from the banking domain in the Business
Process Model and Notation (BPMN) [OMG, 2011a]. The process model describes
the necessary steps to open an account for a customer in a bank. Record Customer
Data, Compute Customer Scoring, and Prepare Bank Card are examples for ac-
tivities, where Record Customer Data may be an example for an activity that is
performed manually by a bank clerk and the latter activities may be examples for

2 1 Introduction

automatically performed activities. The activities in the process model are connected
by edges that indicate their execution order.

X X
Record

Customer
Data

Compute
Customer
Scoring

Prepare
Bank Card

Prepare
Prepaid

Bank Card

Prepare
Credit Card< 3.5

3.5 Set Daily
Withdrawal

Limit

Start
Task

End

Exclusive
Decision

Exclusive
Merge

Fig. 1.1 Process Model describing the Opening of a Banking Account

For the development of IT solutions that support the automation of busi-
ness processes, typically model-driven software development approaches are ap-
plied. In these approaches, business process models are used at different levels in
the development process. For instance in Service-Oriented Architectures (SOA),
high-level business process models become input for the development of IT sys-
tems and in running IT systems executable process models describe choreogra-
phies of Web Services [Zimmermann et al., 2003]. Business-Driven Development
(BDD) [Mitra, 2005] is a paradigm towards the development of SOAs that starts
with high-level business processes, which are stepwise refined until they are exe-
cutable. A key driver behind this development is the necessity for a closer alignment
of business and IT requirements, in order to reduce the reaction times in software
development to frequent changes in competitive markets.

Similar to other artifacts in development, business process models underlie con-
stant change. That means, process models are created and refined by different busi-
ness modelers and software architects in distributed environments. This results in
different versions reflecting the different views of the involved stakeholders. At
some point in time, different versions of a process model have to be compared and
merged with each other to obtain an integrated version by means of process model
change management. The aim of process model change management is to provide
a systematic approach for the consistent development of process models. To that
extent, process model change management comprises different activities, such as
model matching, difference detection, and model merging by resolving differences
between process model versions.

In scenarios, where running process models shall be merged that are already
executed by a business process execution engine, additionally the state of the
process execution must be considered [Rinderle et al., 2004, Rinderle et al., 2006,
Reichert and Dadam, 2009]. For instance, to ensure that currently executed activi-
ties are not modified by a difference resolution.

In the remainder, we focus on process model change management that is used
during design time to merge process models that are not executed yet, similar
to widely used software version and configuration management (SCM), e.g. con-
current versions systems [CVS, 2011] (CVS) or Subversion [Subversion, 2011]

1.1 Motivation and Problem Statement 3

for textual documents. Analogously to the merging of textual documents, process
model change management is a prerequisite to enable optimistic version control
[Mens, 2002], i.e. business modelers can work independently on their own version.
However, in contrast to textual documents that are compared syntactically line by
line, the comparison and merging of business process models must consider the
graph-like structure of process models.

Change management of process models may also be beneficial in case of process
mining approaches, where reference process models are discovered based on an
analysis of versioning logs [Kindler et al., 2006, Kindler et al., 2005] of SCM sys-
tems or by analyzing changes applied to different process versions [Li et al., 2009].
In order to improve existing process models, the discovered reference process mod-
els are merged with existing process models by means of change management.

V

V1 V2

VM
Fig. 1.2 Scenario Overview

An overview of a process model change
management scenario is given in Figure 1.2.
The merging of different versions of a process
model into an integrated version is a classical 3-
way merge scenario. The integrated version VM

incorporates the changes, which were applied to
the different versions V1 and V2. For that pur-
pose, we have to consider the changes between
the source process model V and the two ver-
sions V1 and V2. VM is then created by apply-
ing a subset of the changes that were applied to
achieve V1 and V2. Figure 1.3 gives a concrete
example. In the middle of the figure, the process

model V from Figure 1.1 is shown again together with two versions V1 and V2. We
consider V as the source process model that was created first and afterwards V was
individually refined by different users into the versions V1 and V2.

Before the process model versions can be merged into an integrated version VM ,
the versions need to be matched. Model matching is concerned with the identifica-
tion of corresponding elements between two models. The result of a matching is a
mapping that links related elements between models. In the trivial case, matching
can be based on equal model element identifiers. If equal identifiers are not avail-
able, matching is based on the similarity of other characteristics of model elements
such as their name, their path, and/or their environment.

Based on a mapping, differences between models can be identified. If a change
log exists that records applied model modifications, differences between model ver-
sions are already given and do not need to be identified. However, in typical business
process modeling scenarios, no change log is available that records changes applied
to different model versions. Reasons for this are the use of different modeling tools
by different stakeholders and the distributed environment of large software develop-
ment projects. As a consequence, different versions of a process model need to be
compared to identify differences between the versions before they can be merged.
To ease the understandability, for each detected difference, appropriate change

4 1 Introduction

X X
Record

Customer
Data

Compute
Customer
Scoring

Prepare
Bank Card

Prepare
Prepaid

Bank Card

V
Source
Model

Prepare
Credit Card

< 3.5

3.5

X X
Record

Customer
Data

Compute
Customer
Scoring

Prepare
Bank Card

Prepare
Prepaid

Bank Card

Open
Account

Prepare
Credit Card

< 3.5

3.5

X X

Check
Customer
Data

Retrieve
add. Data

+

+

+

Ask for
Credit Limit

Calculate
Interest
Rate

Select
Credit Card
Corporation

Print
Credit Card
Contract

X X
Record

Customer
Data

Compute
Customer
Scoring

Prepare
Bank Card

Prepare
Prepaid

Bank Card

Open
Account

Prepare
Credit Card

< 3.5

3.5

Check
Customer
Data

+

+

+
Select

Credit Card
Corporation

Calculate
Interest
Rate

Print
Credit Card
Contract

+

V1

V2

Parallel
Fork

Parallel
Join

Editing Operations (V,V2)

Editing Operations (V,V1)
Set Credit
Limit to 0

Remove
Credit Card

Set Interest
Rate to 0

Set Credit
Limit to 0

Remove
Credit Card

Set Interest
Rate to 0

Sign
Contract

Set Daily
Withdrawal

Limit

Set Daily
Withdrawal

Limit

Verify
Customer
Identity

Fig. 1.3 Different Versions of a Business Process Model

operations have to be derived that shall be close to the intended meaning of the
change that caused the difference.

To enable a high degree of automation within merging of different process model
versions, it is important to understand dependencies and conflicts of changes. Infor-
mally if two changes are dependent, then the second one requires the application of
the first one. If two changes are in conflict, then only one of the two can be applied.
As a consequence, an approach for computing dependent and conflicting differences
is required.

A further challenge arises from the fact that change management is a model-
ing language-dependent problem, i.e. a solution for a particular process model-
ing language cannot be reused easily for another language, due to different syn-
tax and semantics of the languages. This is in particular important, since a mul-
titude of well-established modeling languages for process models exist: The de-
facto standard for process modeling is the Business Process Model and Notation
(BPMN) [OMG, 2011a]. Very popular in the industrial context is the Business Pro-
cess Execution Language (BPEL) [OASIS, 2007]. Using the Unified Modeling Lan-
guage (UML) [OMG, 2010a], process models are supported by UML Activity Di-
agrams (UML-AD) [OMG, 2010b]. These examples just present three languages
to model business processes and are not meant to be exhaustive. Further exam-
ples include Event-driven Process Chains (EPC) [Keller et al., 1992], Yet Another
Workflow Language (YAWL) [van der Aalst et al., 2005], or XML Process Defini-
tion Language (XPDL) [WFMC, 2005].

At present, existing approaches do not effectively support change management of
process models. Typical solutions provide support for model change management
for a broad range of models, e.g. for MOF-based models [Alanen and Porres, 2003],
for UML models [Ohst et al., 2003, Kelter et al., 2005], or for Ecore-based models

1.2 Solution Overview and Research Contribution 5

[Eclipse Foundation, 2011c, Westfechtel, 2010, Kögel et al., 2010]. These solutions
do not distinguish between specific model types, such as structural or behavioral
models. The flexibility by being applicable to different model types on the one
hand, comes with disadvantages when model-specific features are important, which
is the case in process model change management. First of all, model-independent
approaches are based on the syntax of models and do not consider the semantics
of specific modeling languages. Thereby, differences can only be considered on an
elementary level, since composite differences require knowledge about the seman-
tics of the underlying modeling language. Elementary differences are not intuitively
understandable and harden the dependency and conflict analysis.

In summary, to leverage the advantages of business process models in model-
based development approaches, the entire life cycle of business process models
needs to be addressed effectively and efficiently. To that extent, a suitable solution
for process model change management is required that supports the development
and evolution of process models in distributed environments. Such a solution needs
to address the following problems:

• Differences between different process models must be identified in a suitable
granularity that is intuitively understandable to different stakeholders in software
development projects.

• To enable a high degree of automation within merging of different process model
versions, it is important to identify dependencies and conflicts of differences.

• Due to the variety of different process modeling languages, a change manage-
ment solution shall be generally applicable to process models in commonly used
modeling languages, such as BPMN [OMG, 2011a], UML Activity Diagrams
[OMG, 2010b], and BPEL [OASIS, 2007].

In this book, we introduce a comprehensive approach to change management of
process models that tackles these problems. Parts of the presented works were de-
veloped during my time at IBM Research - Zurich (Switzerland), where I worked in
the Business Integration Technologies (BIT) group led by Dr. Jana Koehler.

An overview of our proposed solution together with our research contributions is
presented next.

1.2 Solution Overview and Research Contribution

An overview of our solution for process model change management, addressing
the described problems, is sketched in Figure 1.4. The framework consists of seven
main components, which are described in Chapters 3-10 of this book.

First, process models modeled in a specific process modeling language, such as
the BPMN or BPEL, are abstracted to an intermediate representation (IR) to en-
able a language-independent comparison. In the matching component, correspond-
ing model elements between process models in the IR are identified, resulting in
a mapping of the process models. Then, different options for difference represen-
tations are evaluated and a suitable solution for difference representation based on

6 1 Introduction

compound change operations is selected. Based on the IR, differences, dependen-
cies, and conflicts are computed in Components 3-6. In Component 7, IR differences
are translated into differences for the concrete modeling language of the original
process models, which can then be resolved in order to merge the process models.

Framework for Process
Model Change Management

1. Abstraction into Intermediate Representation (Chapter 3)

2. Matching of Process Models (Chapter 4)

4. Dependency Analysis (Chapter 7)

6. Conflict Analysis (Chapter 9)

Process
Model

V Process
Model

V’

Process
Model

VM

5. Equivalence Analysis (Chapter 8)

7. Process Merging (Chapter 10)

Transformation into Language specific
Change Operations Difference Resolution

3. Difference Representation and Detection (Chapters 5 – 6)

Approach to Difference Detection Hierarchical Change Log

Elementary Change Operations Compound Change Operations

Fig. 1.4 Framework for Process Model Change Management

Tool support is implemented in terms of prototypes for most of the compo-
nents in the framework. To prove the applicability of our approach, we have in-
stantiated the framework for models in the Business Process Model and Notation
(BPMN) [OMG, 2011a] and models in the Business Process Execution Language
(BPEL) [OASIS, 2007]. Parts of this work contributed also to the Compare & Merge
framework for WebSphere Business Modeler V 7.0, which was released as an IBM
product in fall 2009.

1.2 Solution Overview and Research Contribution 7

In the following, we briefly describe the individual components of the framework
and point out our research contributions.

1. Process Model Abstraction into Intermediate Representation (Chapter 3)

In general, process model merging is a modeling language-dependent problem. That
means, a solution for a particular process modeling language cannot be reused eas-
ily for another language, due to different syntax and semantics of the languages.
However, to make our approach applicable to models in different modeling lan-
guages, we propose a so-called intermediate representation (IR) that serves as an
abstraction of process models in concrete modeling languages. Based on the IR, we
compute differences between process models and identify dependencies as well as
conflicts between the differences on a language-independent level. The IR is de-
fined by a meta-model that contains key concepts of process modeling languages
and ignores syntactic redundancies of semantically equivalent concepts. We specify
the semantics of the IR in a formal way using Dynamic Meta Modeling (DMM)
[Engels et al., 2000]. DMM is based on graph transformations [Ehrig et al., 1999]
that are used to describe how instances of a meta model change over the time.

Further, to align graph-oriented and block-oriented process modeling lan-
guages [Mendling et al., 2006], the IR decomposes process models into frag-
ments. Therefore, we adapted the decomposition approach for process mod-
els [Vanhatalo et al., 2007] and refined the set of canonical fragments for the pur-
pose of process merging. Finally, we present a mapping from Business Process
Model and Notation (BPMN) [OMG, 2011a] to the IR. The main contributions are
as follows:

• An intermediate language definition in terms of a meta-model that serves as an
abstraction of existing process modeling languages;

• A formal semantic specification of the intermediate representation based on Dy-
namic Meta Modeling (DMM) [Engels et al., 2000];

• A decomposition of process models into suitable fragments for process merging;
• A mapping of a subset of the Business Process Model and Notation (BPMN)

elements to the intermediate language definition.

2. Process Model Matching (Chapter 4)

For the comparison of process models the knowledge about corresponding model el-
ements is required. For that purpose, we provide individual matching strategies for
models in the intermediate representation. In our stepwise approach, we combine
textual, structural as well as semantic matching approaches to identify correspond-
ing model elements as well as corresponding fragments between models in the in-
termediate representation. For process model matching, the main contributions are
as follows:

• Matching strategies to identify corresponding model elements based on syntax
and semantics of process models;

• An approach to match process model fragments based on their position in the
process model and their type (sequential, parallel, alternative, ...).

8 1 Introduction

3. Difference Representation and Detection (Chapter 5 and Chapter 6)

Typically in distributed scenarios, modifications applied to process models are not
logged, requiring that differences must be identified in order to merge different pro-
cess model versions to obtain integrated process models. For the representation of
differences, we introduce two different approaches based on change operations. We
evaluate the suitability of both difference representations for change management
of process models with respect to a set of requirements and show that a difference
representation based on compound change operations is advantageously. Compound
change operations cover the insertion, deletion, and movement of single model el-
ements as well as fragments. Thereby, they comprise several elementary changes,
such as the insertion or deletion of edges, and take care that the process model stays
connected. We show that the granularity of compound change operations is suitable
for effective process model merging.

Further, we propose an approach to difference detection between process models
that results in a reconstructed change log consisting of compound change operations.
The main contributions are as follows:

• A difference model comprising a set of compound change operations that is
required and sufficient to merge process models;

• An approach for the detection of differences between process models based on
the intermediate representation and their representation in terms of compound
change operations.

4. Dependency Analysis of Compound Change Operations (Chapter 7)

When a process model is modified by applying change operations, dependencies be-
tween applied change operations may arise. Informally, two change operations de-
pend on each other if the application of the second operation requires the application
of the first one. Before versions of a process model can be merged, these dependen-
cies between change operations need to be detected. To that extent, we first capture
each of our compound change operations as a model transformation and then com-
pute critical pairs [Bottoni et al., 2000, Hausmann et al., 2002, Heckel et al., 2002],
which can be used for detecting dependent transformations. Dependencies obtained
by a critical pair analysis heavily depend on the order in which change operations
were applied during the development of the underlying process model. To improve
the dependency computation for process merging, we introduce the concept of dy-
namically specified change operations that reduces the number of dependencies and
enables an arbitrary application order of change operations during the merging of
process models.

Further, we show how dependencies between change operations can be efficiently
computed by leveraging information about the hierarchical structure of the underly-
ing process models. The main contributions are as follows:

• A definition of dependency for compound change operations and an approach to
compute dependencies between compound change operations;

1.2 Solution Overview and Research Contribution 9

• A formalization of change operation for process models in terms of model trans-
formations;

• An approach for the dynamic specification of change operations that enables an
arbitrary application order when change operations are applied to merge process
models.

5. Equivalence Analysis of Process Models (Chapter 8)

When compound change operations are applied on different process model versions,
it may happen that individually applied changes result in syntactically different pro-
cess model versions, which are semantically equivalent. Change operations that re-
sult in semantically equivalent process models (or substructures of process models)
must be identified before different versions of a process model can be merged. For
that purpose, we propose an approach for deciding equivalence of business process
models and individual parts of them. Our approach is based on a term representation
of process models and a term rewriting system, which can be used to reduce syntac-
tically different but semantically equivalent process models to the same syntactical
representation. The main contributions for conflict analysis are as follows:

• A term representation of business process models together with a term rewriting
system that enables the efficient identification of semantically equivalent process
models and fragments;

• A normalization of process models and their contained fragments into their nor-
mal form, which is free of syntactic redundancies.

6. Conflict Analysis of Compound Change Operations (Chapter 9)

In scenarios, where process models are developed independently by different users,
different versions of a single process model are obtained. Change operations that
were applied to these versions might be conflicting. Informally, two change opera-
tions are in conflict if only one of the two operations can be applied in the merged
process model. Conflicts between change operations must be detected before multi-
ple versions of a process model can be merged, since they require user intervention
and cannot be applied automatically.

The identification of conflicts can be performed syntactically by analyzing the
structure of the models and/or by comparing change operations, e.g. using a conflict
matrix [Mens, 2002]. However, conflict detection that is solely based on syntactic
features of process models potentially results in false-positive conflicts. That is, two
changes are detected as being conflicting, although the application of the changes
results in semantically equivalent structures. To address these issues, we propose a
method that combines syntactic and semantic detection techniques for conflicting
change operations and results in a precise set of conflicts. The main contributions
for conflict analysis are as follows:

• A definition of syntactic and semantic conflict between compound change oper-
ations;

• A method for the detection of precise conflicts between change operations by
taking the semantics of the change operations into account.

10 1 Introduction

7. Merging of different Process Model Versions and Tool Support (Chapter 10 and
Chapter 11)

Compound change operations together with dependencies and conflicts between
them constitute a change log. Such a change log determines the differences between
two process models in the IR precisely. However, to merge the underlying process
models in their concrete process modeling language, the general compound change
operations need to be translated back into concrete change operations of the original
modeling language. To that extent, we propose an iterative approach that translates
IR change operations to their corresponding concrete change operations.

Based on the concrete compound change operations, we then merge process mod-
els by applying change operations contained in the hierarchical change logs, which
we have reconstructed in the previous components. For that purpose, we present an
approach to apply non-conflicting change operations and additionally provide differ-
ent strategies for the resolution of conflicts between compound change operations.

As an initial evaluation of our solution for process model change management,
we have implemented a prototype of our framework for models in the Business
Process Model and Notation (BPMN) and models in the Business Process Execution
Language (BPEL). Both solutions share approximately 85 % of their code.

The main contributions are as follows:

• An approach for the translation of IR compound change operations into
language-specific change operations for a concrete modeling language;

• An approach for the application of non-conflicting change operations and the
resolution of conflicting compound change operations;

• A prototypic implementation of our solution for process model change manage-
ment.

1.3 Publication Overview

Most of the presented contributions in this book have been published as peer-
reviewed papers at various international conferences. An overview of these papers
is given in Figure 1.5. There, our publications are categorized according to the com-
ponents of our framework (cf. Figure 1.4) to clarify how they are connected to our
solution. In the following, we briefly summarize our publications in chronological
order.

In 2008, we demonstrated our tool support for business process merging at
the 20th International Conference on Advanced Information Systems Engineering
(CAiSE’08) [Küster et al., 2008a] and we presented an approach to difference detec-
tion between process models in the absence of a change log at the 6th International
Conference on Business Process Management (BPM’08) [Küster et al., 2008b].

In [Küster et al., 2009], we published a first approach for the computation of de-
pendencies and conflicts based on syntactical features of change operations and the
underlying process models, which was presented at the 5th European Conference
on Model-Driven Architecture Foundations and Applications (ECMDA-FA’09).

1.3 Publication Overview 11

Equivalence Analysis

Framework and
Intermediate Representation

Tool Support

Difference Detection
and Mapping

Dependency and
Conflict Analysis of
Change Operations

Peer reviewed papers

CAiSE’08 [Küster et al., 2008a]
A Tool for Process Merging in Business Driven

Development

BPM’08 [Küster et al., 2008b]
Detecting and Resolving Process Model Differences in

the Absence of a Change Log

ECMDA FA’09 [Küster et al., 2009]
Dependent and Conflicting Change Operations of

Process Models

MODELS’09 [Gerth et al., 2009]
Language Independent Change Management of

Process Models

ECMFA’10 [Küster et al., 2010]
Dynamic Computation of Change Operations in

Version Management of Business Process Models

SCC’10 – [Gerth et al., 2010b]
Detection of Semantically Equivalent Fragments for
Business Process Model Change Management

MODELS’10 [Gerth et al., 2010a]
Precise Detection of Conflicting Change Operations

using Process Model Terms

SCC’11 [Gerth et al., 2011b]
Precise Mappings between Business Process Models

in Versioning Scenarios

ACM Distinguished Paper Award
IEEE Best Student Paper Award

Softw. and Systems Modeling [Gerth et al., 2011a]
Detection and Resolution of Conflicting Change

Operations in Version Management of Process Models

Fig. 1.5 Publication Overview

We generalized our results in terms of a framework for language-independent
change management for process models, which was published in the proceedings of
the ACM/IEEE 12th International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS’09) [Gerth et al., 2009]. Our technique for dynamic
computation of change operations was published at the 6th European Conference on
Modeling Foundations and Applications (ECMFA’10) [Küster et al., 2010].

Techniques for the identification of equivalent process models and fragments
were published in the proceedings of the IEEE 7th International Conference on
Services Computing (SCC’10) [Gerth et al., 2010b]. This paper received the IEEE
Best Student Paper Award of the IEEE 7th International Conference on Services
Computing (SCC’10). Based on this work, we improved the conflict detection

12 1 Introduction

between change operations by considering the semantics of process modeling lan-
guages in a follow-up publication, published in the proceedings of MODELS’10
[Gerth et al., 2010a]. Also this paper was awarded at the conference with the
ACM/Sigsoft Distinguished Paper Award.

In 2011, we proposed an approach that results in precise matchings between
process models in versioning scenarios, which was published in the proceed-
ings of the IEEE 8th International Conference on Services Computing (SCC’11)
[Gerth et al., 2011b]. Further, we extended our earlier work [Gerth et al., 2010a]
on conflict detection between change operations by a classification of syntactic
and semantic conflicts and proposed several resolution strategies for conflicting
change operations. This work was published in the Journal on Software and Systems
Modeling (SoSym) [Gerth et al., 2011a].

In the remainder, we describe the parts of our framework and our method for
process merging in detail. Next, we give an overview of the book’s structure.

1.4 Structure of the Book

The remainder of this book is organized as follows: In Chapter 2, we introduce the
background for process model change management and present a general overview
of related work in important areas of model versioning. References to related work
concerning detailed aspects of process merging are considered more detailed in later
chapters.

Chapter 3 is concerned with the Intermediate Representation that we propose
as an abstraction and normalization for process models in different modeling lan-
guages. Based on models in the IR, difference, dependency and conflict detection
can be performed on an abstract level. Chapter 4 addresses the matching of pro-
cess models in the intermediate representation in order to identify corresponding
model elements. In Chapter 5, we consider different options for the representation
of differences based on change operations.

Consequently in Chapter 6, we present our approach to detect differences be-
tween different process model versions that results in a reconstructed change log
consisting of compound change operations. Chapter 7 considers the identification
of dependencies between change operations that restrict the order in which change
operations can be applied. We propose an approach to analyze process models and
contained fragments to identify semantic equivalences in Chapter 8. Using this ap-
proach, we propose a method for the detection of syntactic and semantic conflicts
that avoids false-positive conflicts by taking into account semantic equivalences of
business process models in Chapter 9.

Chapter 10 comprises the merging of different process model versions into an
integrated business process model. Chapter 11 is concerned with tool support for
our solution for change management of business process models. Finally, we sum-
marize the contributions of our work and give an outlook on possible future work in
Chapter 12.

2

Background

In this chapter, we lay out the basic foundation for the work presented in this book.
We begin with a general introduction of models in software engineering, followed
by a description of business process modeling in specific. Then, we consider the role
of business process models in model-based development approaches by introducing
business-driven development as a paradigm for the development of service-oriented
architectures. We give an overview of the state of the art in model versioning.
Finally, we conclude this chapter with a summary and a discussion.

2.1 Models in Software Engineering

In the context of software engineering (SE), models are leveraged in nearly all stages
of the development process. During analysis, models provide an abstract representa-
tion of the desired solution, e.g. in terms of use case diagrams. In the design phase,
the structure of the software is determined, e.g. by component diagrams and class
diagrams. In addition, the communication between components is modeled with
sequence diagrams. From structural and behavioral models, code can partially be
generated in the implementation phase. For the purpose of testing, models are used
to generate test cases.

In general, the benefits of using models in SE are manifold: Building models
is usually easier than building the actual IT system. Modeling helps to capture,
structure, and understand an IT system and to reveal possible problems. Models
can be tested or validated using, e.g. model checking techniques. The use of mod-
els in SE has a long standing tradition. In 1976 the Entity-Relationship Model
(ERM) [Chen, 1976] was developed as an abstract representation of data used in
database design. An ERM represents entities, their attributes, and relations be-
tween the entities in a graphical form. In the end of the 1980s and the early 1990s
object-oriented design and analysis arised [Booch, 1994, Coad and Yourdon, 1991,
Jacobson et al., 1992, Rumbaugh et al., 1991], which adopted concepts of ER mod-
els and resulted in various graphical modeling languages. These different languages
were finally unified by the standardization of the Unified Modeling Language
(UML) [OMG, 2010a] that is today developed by the Object Management Group

14 2 Background

(OMG). The UML is a collection of graphical modeling languages that are defined
over a common meta-model.

To support the development of IT systems in specific domains, e.g. in the banking
domain or in the insurance domain, Domain-Specific Languages (DSL) are utilized.
A DSL shall simplify the modeling in its dedicated domain by capturing domain
knowledge and domain terms directly in the modeling language. Thereby, DSLs
enable an intuitive modeling and facilitate the understanding of the created models
by different stakeholders.

As a systematic approach for the model-driven development of IT systems the
OMG proposes Model Driven Architecture (MDA) [OMG, 2009]. MDA distin-
guishes between different modeling abstraction levels: Starting point is typically
the creation of a computational independent model (CIM) that serves as a domain
model by describing the system from a computational independent viewpoint using
the vocabulary that is familiar in the domain. Based on the CIM a platform indepen-
dent model (PIM) is created that focuses on the functionality of the system. Finally,
a platform specific model (PSM) is derived that combines the PIM with implemen-
tation details for a specific platform. Transitions between these models used on the
different abstraction levels can partially be automated by model transformations that
convert a source model into a target model. For the description of model trans-
formations different languages such as Query View Transformation (MOF QVT)
[OMG, 2011b] exist.

The syntax of modeling languages is typically described by meta-models. A
meta-model describes elements and their relations in terms of a graphical model.
In contrast to textual language specifications, such as grammars, meta-models are
more suitable to represent complex relations and dependencies within a language.
For the definition of meta-models standardized meta-meta-models, such as the Meta
Object Facility (MOF) [OMG, 2010c] or Ecore [Eclipse Foundation, 2011b] exist.

The semantics of modeling languages is usually specified textually in natural
language, see e.g. the behavior of the UML [OMG, 2010a] or the behavior of the
Business Process Model and Notation [OMG, 2011a]. Semantic specifications in
natural language have the disadvantage that they are ambiguous and cannot be ver-
ified automatically. In [Engels et al., 2000, Hausmann, 2005], an approach for the
visual and precise semantics specification for modeling languages is presented that
overcomes the disadvantages of specifications in natural language.

In the following two sections, we describe business process models and their role
in software development in detail.

2.2 Business Process Modeling

The activity of constructing models to represent business processes is commonly
known as business process modeling (BPM). BPM is an integral part of business
process management, which addresses the design, maintenance, analysis, and
improvement of business processes in enterprises. The core of BPM are business

2.2 Business Process Modeling 15

process models. A business process model arranges a set of activities to a workflow,
which fulfills a certain business goal. The early origins of business process model-
ing go back to the work management theories of Taylor [Taylor, 1911] and to Gantts
[Gantt, 1919] works in the area of project management in the beginning of the twen-
tieth century. By the rise of Workflow Management Systems, the focus shifted from
organizing work into small tasks that are performed by humans to the automation of
these tasks by the use of software. Today, a multitude of modeling languages exists
for the modeling of business processes. In the next section, we give a brief overview
of some popular modeling languages.

2.2.1 Overview of Business Process Modeling Languages

Fig. 2.1 Source Process Model
V (from Figure 1.3) modeled
as a UML Activity Diagram

The most used languages to specify busi-
ness processes are UML Activity Diagrams
(UML-AD) [OMG, 2010b], Business Process
Execution Language (BPEL) [OASIS, 2007],
Business Process Model and Notation (BPMN)
[OMG, 2011a], and Event-driven Process Chains
(EPC) [Keller et al., 1992]. We briefly introduce
these languages and give examples for their graphical
representation.

The Unified Modeling Language (UML)
[OMG, 2010a] is nowadays the industrial stan-
dard for multi-purpose modeling and comprises 14
different diagrams. Among these, the modeling of
business processes is supported by UML Activity
Diagrams (UML-AD) [OMG, 2010b] that belong to
the behavior diagrams of the UML. Activity diagrams
describe the sequence of elementary Actions within
a business process. The control-flow is determined
by edges that connect the nodes of a UML-AD.
Control-flow splits and joins are modeled using
dedicated ControlNodes that support AND, XOR,
and OR logic. As a part of the UML, the syntax of
UML-ADs is also defined by the UML meta-model. The semantics of UML-ADs
is described in natural language in the UML specification. Figure 2.1 shows the
source process model V (from Figure 1.3) modeled as a UML-AD.

The Business Process Execution Language for Web Services (BPEL4WS or
BPEL for short) [OASIS, 2007] is the standard for the description of processes that
orchestrate web services, e.g. in Service Oriented Architectures (SOA) [Erl, 2005].
BPEL is a mainly block-oriented language that defines the execution order of activ-
ities (e.g. Invoke, Assign,...) by nesting basic control elements, such as Sequence,
Switch, and Flow. BPEL is organized by the Organization for the Advancement of
Structured Information Standards (OASIS) and currently available in Version 2. The

16 2 Background

BPEL specification defines the abstract syntax and its semantics and is therefore
executable. Figure 2.2 shows the source process model V (from Figure 1.3) modeled
in the BPEL.

Fig. 2.2 Source Process Model V (from Figure 1.3) modeled in the BPEL

The de-facto standard for the modeling of business process models is the Busi-
ness Process Model and Notation (BPMN). BPMN Business Process Diagrams
are composed of Flow Nodes such as Activities, Gateways, and Events that are con-
nected by Connecting Objects. The BPMN was developed with a strong focus on
understandability for domain experts as well as IT experts. Since 2005, the BPMN
is developed by the OMG. In its previous Version 1.*, the BPMN only specified
a notation for process models, a meta-model or a behavior specification was miss-
ing. Instead, a partial mapping of BPMN models to BPEL, which is semantically
defined, was provided in the BPMN specification. In the current version 2.0, ma-
jor improvements are added, e.g. a meta-model and behavior description in natural
language. Concrete examples for BPMN models are presented in the next section.

The Event-driven Process Chain (EPC) [Keller et al., 1992] is a graphical mod-
eling language for business process models. Modeling processes in terms of EPCs
is quite popular, especially in Germany, since the language is leveraged by several
tool vendors such as SAP AG and IDS Scheer AG. The language was developed
in 1992 at the Saarland University in Germany in cooperation with SAP AG. EPC
models are composed of functions and events in an alternating manner. Concurrent
and exclusive behavior can be modeled by logical relationships that support AND,
XOR, and OR logic. In EPCs, nodes are connected by edges, which represent con-
trol flow. Figure 2.3 shows the source process model V (from Figure 1.3) modeled
as an EPC.

2.2 Business Process Modeling 17

Fig. 2.3 Source Process Model V (from Figure 1.3) modeled as an EPC

Beside these four popular languages, further process modeling languages exist in-
cluding, e.g. Yet Another Workflow Language (YAWL) [van der Aalst et al., 2005]
and XML Process Definition Language (XPDL) [WFMC, 2005]. YAWL is a lan-
guage based on Petri nets with a strong focus on the support of workflow patterns.
XPDL is mainly used as an exchange format between different tools.

2.2.2 BPMN in Detail

As introduced in the previous section, BPMN is the de-facto standard for process
modeling. For this reason, we adopt the BPMN for the examples presented in this
book. In the following, we give a detailed overview of the BPMN Version 2.0
[OMG, 2011a], which is the current version announced in March 2011. BPMN 2.0
is far more mature and specific than the previous Version 1.2, since it is now defined
in terms of a meta-model and the language’s semantic is textually specified.

The BPMN provides three different diagram types: Business Process Diagrams
(BPD), Choreography Diagrams, and Conversation Diagrams. The former two al-
ready existed in the previous BPMN Version 1.2. In the following, we introduce the
different diagrams together with their main model elements.

18 2 Background

Business Process Diagrams

The main diagram type of the BPMN is the Business Process Diagram (BPD) that is
used to represent business processes in enterprises. Figure 2.4 shows the source pro-
cess of our example from Figure 1.3 modeled with the BPMN. The process model
describes the necessary steps to open an account for a customer in a bank. The indi-
vidual steps are represented by BPMN Tasks labeled with Record Customer Data,
Compute Customer Scoring, or Prepare Bank Card.

X X
Record

Customer
Data

Compute
Customer
Scoring

Prepare
Bank Card

Prepare
Prepaid

Bank Card

Prepare
Credit Card< 3.5

3.5 Set Daily
Withdrawal

Limit

Start
Task

End

Exclusive
Decision

Exclusive
Merge

Fig. 2.4 Source Process Model V (from Figure 1.3) modeled as a BPD of the BPMN

Figure 2.5 shows an excerpt of the BPMN 2.0 meta-model for Business Process
Diagrams. In general a BPD (Process) contains different types of FlowNodes, such
as Activities, Events, and Gateways. These FlowNodes are connected by Sequence-
Flows, which describe the control flow of a process by determining the execution
order of the contained nodes. A SequenceFlow connects a source node with a target
node and specifies that the source node is executed before the target node. For that
purpose, we can imagine the concept of a token, which flows from a source node to
the target node through the SequenceFlow that connects the two nodes.

Activities represent the actual work that is carried out in process. Activities are
further divided into simple activities such as Tasks and structured activities such as
Subprocesses. Structured activities are connected to other nodes in a process model
and may contain other Activities and Edges. Subprocesses can be used to structure
processes hierarchically. A BPMN subprocess helps to separate logically connected
parts in processes models. Activities may contain a LoopCharacteristic that indi-
cates that the activity behaves like a Loop, i.e. the activity is repeated sequentially.
Figure 2.6 shows the concrete notation of selected BPMN activities.

An Event is used to indicate that something occurs in a process. Three differ-
ent categories of events can be distinguished: Start Events specify where a process
starts. Analogously, End Events specify the end of a process (or the end of a path
through the process) and Intermediate Events specify things that can happen in be-
tween the start and the end of a process, e.g. the arrival of a message or the modi-
fication of a data object. Figure 2.7 shows the concrete notation of the BPMN Start
and End Event.

Gateways are used to split and join the control flow within a process model
by controlling the SequenceFlows that are connected to them. To that extent, the

2.2 Business Process Modeling 19

Process

FlowElementsContainer

FlowElement

FlowNode SequenceFlow

Activity Event Gateway

Task

SubProcess

LoopCharacteristics StartEvent EndEventIntermediateEvent

ExclusiveGateway

InclusiveGateway

ParallelGateway

ComplexGateway

DataAssociation

DataInputAssociation DataOutputAssociation

DataObject

ItemAwareElement

+flowElements *

+container 1

+loopCharacteristics 0..1

0..1

+dataOutputAssociations*

0..1

+source

1

+outgoingFlow

*

+incomingFlow

*

+target

1
+dataInputAssociation *

0..1

+targetRef

+sourceRef

Fig. 2.5 An Excerpt of the BPMN Meta-model

Task LoopSub-Process

+

Fig. 2.6 Selected BPMN Activities

Start End

Fig. 2.7 BPMN Start and End Event

number of tokens arriving at the incoming SequenceFlows of a gateway may be
increased or decreased and are then distributed on the outgoing SequenceFlows of
the gateways. Whether tokens are produced or consumed and how they are dis-
tributed on the outgoing SequenceFlows depends on the type of the gateway. BPMN
supports the following gateway types: ExclusiveGateway (XOR), InclusiveGateway
(OR), ComplexGateway, and ParallelGateway (AND). Figure 2.8 shows notations
for the main types of BPMN gateways.

As already introduced, SequenceFlows belong to the set of Connections that
can connect nodes in a BPD. Other Connections that are provided by the BPMN
are DataAssociations and MessageFlows. The former describe the data-flow in a

20 2 Background

+

Parallel-Fork

+

Parallel-Join Inclusive-Decision Inclusive-Merge

X X

Exclusive-Decision Exclusive-Merge Complex-Decision Complex-Mergep p g

Fig. 2.8 BPMN Gateways

process, i.e. they specifiy how DataObjects are passed between the nodes of a pro-
cess. MessageFlows1 describe how participants of a process communicate via Mes-
sages. Figure 2.9 shows the concrete syntax of the BPMN connections.

Sequence Flow Message Flow Data Association

Fig. 2.9 BPMN Connections

Collaboration Diagrams

To provide a more complete overview of the BPMN, we briefly present the BPMN
Collaboration package and its contained diagram types in this section. However, in
the remainder of this book, we focus on business process diagrams of the BPMN
and we do not consider the diagrams of this package in our solution for business
process change management.

In general, the collaboration package provides different means to model par-
ticipants that work together. A collaboration consists of at least two participants,
which represent either a specific PartnerEntity, such as specific stakeholder or
a general PartnerRole, such as a buyer or a seller. In general, two different di-
agram types exist to model a collaboration, which are briefly introduced in the
following.

1 For readability reasons, MessageFlows are not shown in the excerpt of the BPMN meta-
model. For further information, we refer to [OMG, 2011a].

2.2 Business Process Modeling 21

Conversation Diagram

A Conversation Diagram describes the message flow between participants in a col-
laboration on a high level. Participants are modeled in terms of Conversation Nodes
that are connected by Conversation Links. A conversation link composes several re-
lated and individual message exchanges into a logical group. A conversation node is
visualized by a labeled rectangle called Pool and can contain a Business Process Di-
agram. Figure 2.10 shows a conversation diagram from our example. It describes the
conversation between two participants, namely a Bank Clerk and a Rating Agency
that provides the rating of a customer.

X X
Record

Customer
Data

Compute
Customer
Scoring

Prepare
Bank Card

Prepare
Prepaid

Bank Card

Prepare
Credit Card< 3.5

3.5 Set Daily
Withdrawal

Limit

Ba
nk

Cl
er
k

Ra
tin

g
Ag

en
cy

Conversation Link

Conversation Node

Fig. 2.10 A BPMN Conversation Diagram of our Example

Choreography Diagram

To specify an order in which the message exchanges in a conversation diagram shall
take place, a Choreography Diagram can be used. This diagram type arranges the
message flow between participants using Choreography Activities, which represent
related message flows between several participants. A sender of a message is de-
picted by a transparent bar of the activity and the receiver of a message is visualized
by a shaded bar. Choreography activities contained in a choreography diagram are
arranged by sequence flows and other flow nodes that are also used in business pro-
cess diagrams.

Figure 2.11 provides an example of a choreography diagram. The diagram ar-
ranges the message flows of our two participants (Bank Clerk and Rating Agency)
by the two choreography activities “Request Customer Rating” and “Provide Cus-
tomer Rating”, which are executed sequentially.

In the next section, we consider the semantics of process models.

22 2 Background

X X
Record

Customer
Data

Compute
Customer
Scoring

Prepare
Bank Card

Prepare
Prepaid

Bank Card

Prepare
Credit Card< 3.5

3.5 Set Daily
Withdrawal

Limit

Ba
nk

Cl
er
k

Ra
tin

g
Ag

en
cy

Request
Customer
Rating

Request
Customer
Rating

Request
Customer
Rating

Provide
Customer
Rating

Fig. 2.11 A BPMN Choreography Diagram of our Example

2.2.3 Semantics of Process Models

In this section, we give an overview of the semantics of process models in general
and describe two ways for semantics specification.

When we talk about the semantics of process models, we talk about the behavior
of a process model when it is executed. The behavior of process models is typically
defined based on the semantics of Petri nets [Murata, 1989] in terms of token-flow,
which utilizes the theoretical concept of a token flowing from an input place to an
output place of a transition. The nodes of a process model represent the transitions
of a Petri net, and the edges are the places of the Petri net. A state of a process model
can then be described as the number of tokens carried by the nodes and edges of a
process model.

Usually, the execution semantics of process models is described informally in
terms of natural language. Prominent examples are the semantics specification of
BPD in [OMG, 2011a] or the semantics specification of UML Activity Diagrams
[OMG, 2010b]. To give an example, in the BPMN Specification (Version 2.0)
exclusive gateways are semantically specified as follows:

“A diverging Exclusive Gateway (Decision) is used to create alternative paths
within a Process flow. This is basically the diversion point in the road for a Pro-
cess. For a given instance of the Process, only one of the paths can be taken. [...]
A converging Exclusive Gateway is used to merge alternative paths. Each incoming
Sequence Flow token is routed to the outgoing Sequence Flow without synchroniza-
tion.” [OMG, 2011a]

2.2 Business Process Modeling 23

Semantic specifications in natural language have the disadvantage that they are
usually ambiguous; e.g. in the case of the BPMN’s exclusive gateway specifications
from above, the concept of a token is used only for the description of a converg-
ing exclusive gateway, but not for the diverging gateway. Further, textual semantic
specifications break the visual design concept, i.e. the syntax is specified visually
by a meta-model whereas the semantics is described textually in natural language.
Thereby, textual semantic specifications are often interpreted differently resulting in
undesired behaviors. In addition, semantics specifications in natural language can-
not be verified automatically, e.g. by applying model checking techniques.

An approach to overcome these issues is Dynamic Meta Modeling (DMM)
[Engels et al., 2000, Hausmann, 2005], which was developed to enable a precise
and formal way to specify the semantics of a modeling language and being under-
standable at the same time. The DMM approach is based on graph transformations
[Ehrig et al., 1999] and can be universally applied to any kind of modeling language,
whose syntax is specified in terms of a meta-model. DMM extends the meta-models
of languages with concepts for the description of dynamic semantics. For process
modeling languages this means that the concept of token flow needs to be added. In
[Engels et al., 2007], the concept of token-flow is added to the meta-model of UML
Activity Diagrams. In Chapter 3, we extend the meta-model of our intermediate
representation for process models and introduce the concept of token-flow.

To describe the behavior of an instance of such an extended meta-model, in-
stances are mapped to typed graphs [Corradini et al., 1994]. A typed graph consists
of nodes and edges, which are typed over the extended meta-model of the language2,
whose semantic shall be specified. A DMM rule is defined as a typed graph trans-
formation rule, which modifies these typed graphs and describes valid changes of
the graphs. Figure 2.12 visualizes the DMM rule that specifies the behavior of a
diverging exclusive BPMN gateway.

eg :ExclusiveGateway:SequenceFlow :SequenceFlow

:Token

{destroyed}

{new}

carries

carries

+source

+outgoingFlow
+incomingFlow

+target

Fig. 2.12 DMM rule that specifies the behavior of a diverging exclusive gateway of the BPMN

The typed graph transformation rule shown in Figure 2.12 consists of two in-
stance graphs: one describing the situation before the rule is applied (L) and another

2 We will provide an example of such an extended meta-model in the course of this book.

24 2 Background

one describing the situation after the application of the rule (R). L consists of all un-
marked elements and the elements marked {destroyed}. R consists of all unmarked
elements and the elements marked {new}.

The rule opr is applied and transforms a graph G into a graph H if a graph homo-
morphism exists such that L is embedded in G. In this case, G is transformed into
H by deleting all elements that are marked {destroyed} and creating all elements
marked {new}.

Using the DMM approach, the semantics of a modeling language can be defined
precisely being at the same time highly understandable. Additionally, visual and
model-based semantic specification integrates well in the MDA approach proposed
by the OMG. In this book, we will specify the semantics of the intermediate repre-
sentation (Chapter 3) by applying the DMM approach.

2.3 Business Processes in Model-Based Development

The importance of business processes and business process modeling in the devel-
opment of IT systems is continuously growing. Key driver for this development is
the need to react more flexibly to steadily changing markets. That means, business
processes undergo a constant change and accordingly the underlying IT solutions
and architectures have to keep pace.

A
na

ly
ze

&
A

da
pt

Monitor Deploy

D
evelop

Model

Process Model
Change Management

Fig. 2.13 Main Phases of Busi-
ness Driven Development (BDD)
[Koehler et al., 2008]

New software engineering approaches fo-
cus on a closer alignment of the IT level of
an enterprise with its business needs and re-
quirements expressed by business processes.
A promising methodology is Business-
Driven Development (BDD) [Mitra, 2005,
Koehler et al., 2008].

BDD adopts the model-driven approach
and allows to derive IT solutions directly
from a business process model. In addition,
BDD promises an increased flexibility and
shorter turnaround times when changing the
business and adapting the IT systems. The
approach starts with the development of busi-
ness process models that represent the busi-
ness strategy and requirements for an IT so-
lution. During several phases the business processes are then transformed into an
executable IT solution. The transformation is typically achieved by applying model
transformations. The main phases of business-driven development are depicted in
Figure 2.13.

In the Model phase the process models of the underlying business processes are
created. Thereby, also the business goals and requirements are included. In the De-
velop phase the process models are refined through several model transformation
steps until an implementation is reached. Afterwards, the implementation can be

2.4 State of the Art in Model Versioning 25

inserted into an existing IT environment in the Deploy phase. In the following Mon-
itor phase the integrated implementation is examined and it is checked whether the
business goals and requirements are fulfilled. Finally, in the Analyze & Adapt phase
possible improvements and adaptations are detected and are transferred to the orig-
inal process models. BDD tries to establish a linkage between the business and the
IT requirements created by the process models in order to ensure that business re-
quirements are considered on the IT level and vice versa.

Since BDD is a cyclic development process and its phases can be applied in
multiple iterations, several versions of an input process model with different degrees
of refinement are created. As a consequence, it will frequently be necessary to merge
different versions of a business process model within and between phases of BDD.
Key concepts for the merging of process models are introduced in the following
section.

2.4 State of the Art in Model Versioning

In the previous section, we have considered the use of business processes in model-
driven development approaches of IT-systems. In such approaches, process models
are developed independently by different people and different versions are created.
These versions need to be integrated at some point in time to obtain a merged ver-
sion. For that purpose, a solution for change management of process models includ-
ing model versioning is required.

In this section, we present the state of the art in model versioning. In general,
model versioning comprises (at least) the following activities: Model Matching
and Similarity Analysis, Difference Representation and Detection, Dependency and
Conflict Analysis, and Model Merging. Model Matching considers the identifica-
tion of corresponding model elements between different models and utilizes differ-
ent similarity measures to obtain a mapping between corresponding process model
elements. This mapping is the input for Difference Representation and Detection,
where differences between the models are identified and captured in a suitable kind
of difference representation. Finally, during Dependency and Conflict Analysis, de-
tected differences between models are analyzed to identify differences that must be
resolved together (dependencies) and differences, whose resolutions mutually ex-
clude each other (conflicts). Finally, based on the identified differences, in Model
Merging different models are merged to obtain an integrated version. To that ex-
tent, the different models are harmonized in an integrated version by resolving the
differences between them.

In the remainder, we first present criteria for the classification of model version-
ing approaches. Then, we summarize existing approaches, which are finally evalu-
ated according to the classification criteria.

26 2 Background

2.4.1 Classification of Model Versioning

In general, approaches to model versioning can be classified according to different
criteria. In the following, we briefly introduce a set of distinguishing criteria, which
we later use to classify existing approaches to model versioning.

Generic vs. Language-Specific Approaches

Firstly, approaches to model versioning can be classified according to the kinds
of models they support. Here, we distinguish between generic approaches that are
independent of the modeling language and approaches that are language-specific.

The former group of approaches can be generically applied to merge models in
different modeling languages. Typically, the only restriction is the underlying meta-
meta-model of the modeling language, which is usually the MOF [OMG, 2010c]
or EMF/Ecore [Eclipse Foundation, 2011b, Steinberg et al., 2009]. However, the
generic applicability comes with the price that language-specific details such as the
semantics of a concrete modeling language that is specified on the meta-model level
is not considered. As a consequence, some activities of model versioning, such as
difference detection and conflict analysis can only be applied on a syntactical level.

In contrast to generic approaches, language-specific approaches to model ver-
sioning focus on models in a particular language like UML state diagrams
[OMG, 2010a] or a group of similar languages such as process modeling lan-
guages. Which language-specific aspects are considered depends on the approach
and typically ranges from support for the detection of composite differences, such
as refactorings, to the identification of syntactic redundancies that model semanti-
cally equivalent concepts.

Two-Way vs. Three-Way Merging

V V1
VM

Fig. 2.14 Two-Way Merge
Scenario

A further classification criteria is the number of models,
which are considered for merging. In a two-way merge
scenario, two models are involved. These may be two
successive versions or two distinct models in a reference
model customization scenario, e.g. an as-is model and a
related to-be model that shall improve the as-is model.
In the following, we refer to these two models as source
and target model. The goal of a two-way merge is to
bring the source model closer to the target model. For that purpose, it is necessary
to identify differences between the source and the target model. The source and the
target model are then merged by resolving a subset of differences between them.
Figure 2.14 illustrates a two-way merge. The two models V and V1 are merged by
resolving differences between them. Thereby, the integrated model VM is obtained
that is somewhere between the source model V and the target model V1.

In three-way merge scenarios, three models are involved: two indepen-
dently changed versions V1 and V2 as well as a common source ver-
sion V of them. Figure 2.15 visualizes a three-way merge scenario. The

2.4 State of the Art in Model Versioning 27

goal of a three-way merge is to integrate the two individual versions into
an integrated version VM , which is somewhere in between V1, V2, and V .

V

V1 V2

VM
Fig. 2.15 Three-Way Merge
Scenario

The integrated version VM is constructed based on the
common source version V by resolving differences be-
tween the source version V and V1 as well as differ-
ences between V and V2. In contrast to a two-way
merge, the resolution of differences may result in con-
flicts, i.e. the resolution of some differences between
V,V1 and V,V2 may mutually exclude each other. For
instance, a corresponding model element is located at
different positions in the Versions V1 and V2. However,
in the integrated version VM, this model element can
only be located at one of these positions. Conflicts must
be identified before models can be merged and require
manual user intervention during the merging process.

State-Based vs. Change-Based Merging

In state-based merging approaches, only the source model and the target model(s)
are considered for comparison. Information about the changes that were applied to
obtain the target model(s) or the order in which the changes were applied are not
given. Typically, in state-based merging no change log exists and differences and
similarities between different model versions must be identified by comparing the
models.

In addition to the information given in the different model versions, change-
based merging approaches utilize also change logs that provide a history of applied
changes. In these change logs, changes are typically logged chronologically when
they are applied to modify a model. In change-based merging approaches, differ-
ences between models do not need to be reconstructed by comparing the models.
However, existing change logs need to be purged in order to get rid of redundant
and overwritten changes [Rinderle et al., 2006].

Matching Based on Unique Identifiers vs. Matching Based on Heuristics

Matching of models to gather knowledge about corresponding model elements be-
tween them is a prerequisite for model merging. As a consequence, existing ap-
proaches to model versioning propose a solution for model matching or at least
assume that corresponding model elements have been identified.

Generally, model matching approaches can be distinguished into approaches that
rely on unique identifiers of model elements or approaches that use heuristics for
matching. The former approaches require that each model element has a unique
identifier, e.g. an ID, and trivially consider two model elements with the same ID as
corresponding. However, these approaches can only be utilized in a scenario where
unique identifiers exist, which is not always the case, e.g. if models are modified
across tool boundaries. The latter heuristics-based approaches are more elaborate

28 2 Background

and use different similarity measures to obtain a mapping between corresponding
process model elements. For instance, heuristic-based approaches identify corre-
sponding model elements by measuring the distance between the names of the ele-
ments or consider the structure of the models.

Granularity of Differences: Elementary vs. Composite

Approaches to model versioning can be distinguished according to their supported
granularity of difference representation. We distinguish between approaches that
support elementary differences and approaches that support composite differences.

The former approaches represent differences between models on an elementary
level based on corresponding single model elements. Relationships between ele-
mentary differences, such as dependencies, are often numerous and are not directly
understandable. The latter approaches also support composite differences, such as
refactorings [Fowler et al., 1999], and are far more intuitive and user friendly. For
instance, they potentially result in a more precise set of conflicts between differ-
ences. However, the detection of composite differences is more difficult and often
requires predefined difference patterns.

Syntactic and Semantic Conflict Analysis

Finally, the conflict analysis of versioning approaches can be distinguished accord-
ing to the types of conflicts that can be detected. We distinguish here between ap-
proaches that solely consider the modeling language’s syntax for conflict analy-
sis and approaches that additionally consider the language’s semantics for conflict
analysis.

The former approaches result in false-positive conflicts if models contain syn-
tactic redundant elements (also known as syntactic sugar) or entire substructures
which are equivalent from a semantic point of view like the partial equivalences
between the parallel structures in process models V1 and V2 from our example in-
troduced in Figure 1.3. This problem is in particular important in the case of process
modeling, since well-established modeling languages, such as the Business Process
Model and Notation (BPMN) [OMG, 2011a] or UML Activity Diagrams (UML-
AD) [OMG, 2010a], generally allow a user to connect elements such as Activities
or Gateways in an arbitrary way. This favors the construction of syntactically very
different process models, which are at the same time semantically equivalent regard-
ing their execution logic and execution order.

Semantics-based approaches to conflict detection additionally consider the se-
mantics of a modeling language during model comparison and are hence able
to identify such equivalences. We distinguish the semantic conflict detection ap-
proaches into approaches that are able to identify semantic equivalences between
syntactically different elements and approaches that are able to identify equivalences
between syntactically different substructures.

In the next section, we introduce existing works to model versioning.

2.4 State of the Art in Model Versioning 29

2.4.2 Overview of Existing Approaches

Existing related works for model versioning exist on a broad range. In the follow-
ing, we give a brief overview of these works. References to related work concerning
more detailed aspects of model versioning, such as model matching or conflict anal-
ysis, are considered later in the respective chapters.

Lippe and Oosterom first introduced operation-based merging of models in
[Lippe and van Oosterom, 1992]. Their approach compares recorded elementary
change operations syntactically to identify conflicts.

Alanen and Porres [Alanen and Porres, 2003] describe an approach to version-
ing of MOF-based models. The approach comprises the detection of differences
between models in terms of elementary change operations. Further, they describe
how syntactic conflicts between detected operations can be identified and address
the resolution of conflicts.

In [Ohst et al., 2003], an approach to the versioning of UML diagrams is pre-
sented. The approach identifies elementary differences between model versions in
terms of a mapping that is obtained by comparing the model versions syntax. Differ-
ences are represented by overlapping the model versions in such a way that common
model elements and model elements that are specific to a version can be distin-
guished. The approach does not consider the detection of dependencies or conflicts
between model differences. Merging of models is not addressed.

In [Pottinger and Bernstein, 2003], a generic merge operator is presented that
merges two input models based on a given mapping between them. The merged
model contains all common elements and all non-duplicated model elements. Such
a merged model may contain conflicts, which need to be identified and resolved
afterwards either by applying a resolution pattern or by manual user intervention.
Conflicts are distinguished into three categories: conflicts that occur on the model
level, meta-model level, and meta-meta-model level. For some conflicts of the latter
category, they introduce resolution patterns.

Chawathe et al. present a generic approach for the detection and representation
of differences in tree-structured data [Chawathe et al., 1996]. The approach is state-
based and uses similarity heuristics to match nodes in trees. Identified differences
between two trees are represented in terms of change operations that are visualized
directly in the two trees that have been overlapped. Dependencies between differ-
ences or conflicts between them are not considered.

In [Schneider et al., 2004, Schneider and Zündorf, 2007], the CoObRA frame-
work is presented, which is the build-in versioning support of the Fujaba tool suite3

[Nickel et al., 2000]. The versioning approach is change-based and it is assumed that
corresponding model elements in different model versions have the same identifier.
Differences are identified on an elementary level but can be manually grouped into
composite differences. Dependencies between individual differences are not consid-
ered. Two models are merged by applying the changes contained in the change log of
one model iteratively also on the other model. If a change cannot be applied, a conflict
is detected. However, the concrete changes that are in conflict are not identified.

3 http://www.fujaba.de/

http://www.fujaba.de/

30 2 Background

[Kelter et al., 2005] present a generic approach for matching and difference de-
tection of UML models. Differences are obtained in terms of elementary change
operations and are visually presented to the user by overlapping the different model
versions. Dependencies or conflicts between differences are not addressed.

EMF Compare [Eclipse Foundation, 2011c, Brun and Pierantonio, 2008] is an
Eclipse [Eclipse Foundation, 2011a] project that enables the matching, difference
detection, and merging of Ecore-based models. Support for language-specific as-
pects such as composite operations is not considered. Models are merged in an
iterative approach by applying elementary change operations. EMF compare is
used in several other approaches, e.g. [Altmanninger et al., 2008], or in commer-
cial tools like the IBM Rational Software Architect [Letkeman, 2005]. A very sim-
ilar approach to matching and difference detection of UML models is described in
[Xing and Stroulia, 2005].

Odyssey-VCS [Murta et al., 2007, Murta et al., 2008] provides versioning sup-
port for UML models. The approach requires model elements with unique identifiers
and considers differences on an elementary level. The conflict detection is syntax-
based and does not consider the semantics of individual UML diagrams, such as
UML activity diagrams.

[Kögel, 2008] present UniCASE as a tool to integrate the heterogeneous tool-
landscape in software engineering projects based on a unified model that contains
and relates typical models used in software engineering such as Use Cases or UML
class diagrams. UniCase also supports the versioning of these models in a change-
based approach. For that purpose, the approach relies on a recorded change log con-
sisting of elementary and composite change operations. Conflicts between change
operations are detected in a purely syntax-based approach. The approach is in partic-
ular suitable for structured models, like class diagrams. In contrast to our versioning
approach for process models, the execution semantics of the underlying modeling
languages is not considered.

[Kögel et al., 2010] introduce a repository for EMF models called EMFStore,
which originates from the UniCASE tool introduced above and also supports model
versioning. In contrast to UniCASE, EMFStore seems to be usable generically for
EMF-based models. Additionally, the syntactic conflict detection has been improved
by proposing levels of conflict severity, i.e. hard and soft conflicts.

Westfechtel [Westfechtel, 2010] proposes a generic approach to three-way merg-
ing of EMF or Ecore-based models. The approach is based on the syntax of the
modeling language and considers applied changes on an elementary level. Based on
a syntactic comparison of the input models and mappings between them, a merged
version is produced that incorporates all non-conflicting changes and resolved con-
flicts that are shown as alternatives to a user.

These generic approaches have in common that they can be applied on models
in different modeling languages and the detection of conflicts is based on the syn-
tax of the modeling language. However, the generic applicability comes with the
price, that the semantics of a concrete modeling language cannot be considered. As
a consequence, semantic equivalences between syntactic different models cannot be
identified, resulting in potential false-positive conflicts. Two changes are conflicting

2.4 State of the Art in Model Versioning 31

if their applications mutually exclude each other. A detected conflict between two
change operations is false-positive if the applications of the change operations result
in semantically equivalent models that may be syntactically different.

Moreover, generic approaches compute differences based on elementary changes,
e.g. [Alanen and Porres, 2003, Kögel et al., 2010, Westfechtel, 2010]. In the case of
process modeling, these elementary change operations are often numerous, since
even minor changes like the insertion of an activity and the subsequent reconnection
of control-flow result in several elementary change operations. As a consequence,
multiple conflicts may occur that need manual user interventions when models are
merged. To address this issue, composite change operations have been proposed for
process modeling [Weber et al., 2007, Küster et al., 2008b].

Following this line, Altmanninger et al. propose a semantically enhanced model
version control system (SMoVer) [Altmanninger, 2007] for EMF-based models.
This generic approach can be extended by specifications of semantic aspects for
specific modeling languages. Thereby, semantic conflicts can be identified and some
false-positive conflicts can be avoided. For instance, false-positive conflicts due to
syntactic redundancies of single model elements that are semantically equivalent are
avoided. However, SMoVer cannot identify semantic equivalences between more
complex model structures.

Further, Altmanninger et al. introduced an adaptable model versioning system
(AMOR) [Altmanninger et al., 2008, Brosch et al., 2009] that aims to combine the
advantages of generic and language-specific approaches. Their approach incorpo-
rates language-specific composite operations that are predefined by a user in the
conflict detection in order to obtain precise conflicts that cannot be computed based
on elementary operations. The approach does not support the execution semantics
of behavioral models, such as process models. Accordingly, AMOR does not iden-
tify semantic equivalences between syntactically different elements or entire model
structures. The work is extended in [Brosch et al., 2010], where an approach for the
resolution of conflicts based on predefined patterns is presented. The definition of
conflict resolution patterns may also be beneficial in our approach.

The conflict detection approach used in AMOR is improved in
[Taentzer et al., 2010]. There, notions of operation-based and state-based conflicts
are introduced and dedicated detection approaches based on graph modifications
are described for both notions. The approach is syntax-based and can be applied
generically on graph-structured models. For the detection of operation-based
conflicts, model versions must not differ to much, otherwise potential operations
may be difficult to identify based on minimal rules. However, in business process
modeling, individually developed model versions may differ to a large degree.

In [Nejati et al., 2007], a language-specific approach to match and merge state
charts is presented. In this work, a match operator identifies correspondences be-
tween model elements of state charts by considering their syntax and execution
semantics. Based on these correspondences a merge operator then automatically
merges different state charts by creating an integrated state chart that represents
the union of the shared behavior of the different state charts. Individual behavior is

32 2 Background

integrated in terms of variabilities with guards. Conflicts between different state
charts are not addressed.

Similarly, in [Rosa et al., 2010] different process models are merged, by creat-
ing a configurable process model that is the union of the common behavior of the
different process models. Differences are included using configurable connectors.
Conflicts between the input process models, e.g. due to mutually excluding behav-
ior, are not considered.

Cicchetti et al. [Cicchetti et al., 2008] have recently proposed a domain-specific
language for the specification of conflicts that can be applied in versioning scenar-
ios. Conflicts are specified in terms of models representing conflicting concurrent
changes. Thereby, elementary as well as composite changes can be specified, e.g.
changes that introduce a singleton patterns together with changes that violate this
pattern. The conflict models are than interpreted syntactically on difference models.
The approach does not consider syntactically different elements or structures that
are semantically equivalent.

ADEPT/ADEPT2 [Reichert et al., 2003, Reichert et al., 2005] is a process man-
agement system that manages process model types and running instances, which
underlie constant change. For the migration of running process models to a modi-
fied process type definition, techniques are used that can also be used to establish
versioning support for process models. In [Rinderle et al., 2004], conflict detection
between applied changes is addressed on a syntactical level by comparing process
models and applied change operations. However, the approach does not consider
model matching and difference detection, since the approach is integrated in a sin-
gle modeling environment and all applied changes are recorded in a change log.

[Ekanayake et al., 2011] propose a repository system for the storage of large col-
lections of process models that also provides versioning support. The core idea of
the approach is to store subgraphs of process models instead of entire process mod-
els. The subgraphs (fragments) may be shared by different process models. The ap-
proach is state-based and does not consider matching of process models. Conflicts
between concurrent changes are prevented by locking subgraphs that are currently
under modification.

Next, we evaluate the existing approaches to model versioning.

2.4.3 Evaluation

In this section, we evaluate the existing approaches according to our classification
for model versioning. In the evaluation, we considered all presented approaches
from above, except the two merge operators proposed in [Nejati et al., 2007,
Rosa et al., 2010], since these approaches basically compute a “duplicate-free”
union containing the complete behavior of the underlying models and do not con-
sider conflicts between model changes. Accordingly, their merge result cannot be
used in versioning systems. Similarly, we exclude the proposed repository for pro-
cess model [Ekanayake et al., 2011] from our evaluation, since the presented ap-
proach relies on pessimistic version control and hence does not consider conflicts
between concurrent changes. Matching of process models is also not addressed.

2.4 State of the Art in Model Versioning 33

Table 2.1 shows the result of our evaluation. Most of the approaches in our
evaluation are generically applicable to merge models in different modeling lan-
guages, typically models with the same meta-meta-model are supported, e.g. MOF
[OMG, 2010c] or Ecore [Eclipse Foundation, 2011b]. Nearly all approaches sup-
port three-way merging.

Table 2.1 Evaluation of existing Approaches to Model Versioning

Approach Matching Difference Conflict
Detection Analysis

ge
ne

ri
c

(G
)
/

la
ng

ua
ge

-s
pe

ci
fic

(L
)

st
at

e-
ba

se
d

(S
B

)
/

ch
an

ge
-b

as
ed

(C
B

)

2-
w

ay
m

er
gi

ng
(2

)
/

3-
w

ay
m

er
gi

ng
(3

)

un
iq

ue
id

en
ti

fie
r

he
ur

is
ti

cs

el
em

en
ta

ry
di
ff

er
en

ce
s

co
m

po
si

te
di
ff

er
en

ce
s

de
pe

nd
en

ci
es

sy
nt

ac
ti

c

se
m

.e
qu

iv
al

en
t

el
em

en
ts

se
m

.e
qu

iv
al

en
t

st
ru

ct
ur

es

[Lippe and van Oosterom, 1992] G CB 3 � � + - (+) + - -
[Alanen and Porres, 2003] G SB 3 + - + - + + - -
[Ohst et al., 2003] G SB 3 + - + - - + - -
[Pottinger and Bernstein, 2003] G SB 3 � � + - - + - -
[Kelter et al., 2005] G SB 3 - + + - - � � �
EMF Compare
[Eclipse Foundation, 2011c]

G SB 3 + + + - + + - -

[Chawathe et al., 1996] L SB 2 + + + - � � � �
Odyssey-VCS [Murta et al., 2007,
Murta et al., 2008]

G SB 3 + - + - - + - -

[Cicchetti et al., 2008] G CB 3 � � + + - + - -
UniCASE [Kögel, 2008] L CB 3 + - + + + + - -
EMFStore [Kögel et al., 2010] G CB 3 + - + + + + - -
[Westfechtel, 2010] G SB 3 + + + - - + - -
SMoVer [Altmanninger, 2007] G SB 3 + - + + - + + -
AMOR [Altmanninger et al., 2008] G SB 3 + - + + - + - -
CoObRA [Schneider et al., 2004,
Schneider and Zündorf, 2007]

G CB 3 + - + - - + - -

ADEPT [Reichert et al., 2003,
Reichert et al., 2005]

L CB 3 � � + + + + - -

+ supported (+) partially supported - not supported � not considered

The matching of models to identify corresponding model elements is not con-
sidered in all approaches, some of the approaches simply assume that a matching
is given, e.g. [Pottinger and Bernstein, 2003] or suggest the use of EMF Compare
[Eclipse Foundation, 2011c] like [Westfechtel, 2010]. However, for the matching of
individually modified process models, an approach that matches models based on
similarity heuristics is required, since it is not always the case that unique identifiers
are given. In particular in scenarios, where models are developed using different
tools unique identifier are typically not given.

34 2 Background

In the case of difference detection, the majority of existing model versioning ap-
proaches only considers differences between models on an elementary level. Some
of the change-based approaches support composite differences [Kögel et al., 2010,
Reichert et al., 2003], that have been recorded directly when models are manipu-
lated. Only AMOR [Altmanninger et al., 2008] and SMoVer [Altmanninger, 2007]
support the detection of composite differences based on predefined differences in
terms of graph transformations.

Nearly all versioning approaches support conflict analysis between inde-
pendently applied modifications based on the syntax of the models. SMoVer
[Altmanninger, 2007] additionally supports the identification of syntactically differ-
ent but semantically equivalent model elements. None of the evaluated versioning
approaches is able to identify semantic equivalences between partial model struc-
tures, like the equivalences between the parallel structures in process models V1 and
V2 from our example introduced in Figure 1.3.

In our language-specific approach to process model versioning, we will address
all these issues.

2.5 Summary and Discussion

In this chapter, we provided the necessary background for the remainder of the book,
comprising process modeling, the role of process models in model-based develop-
ment, as well as an evaluation of the state of the art in model versioning.

Based on this foundation, we now present the individual components of our
framework for process model change management. As discussed in Chapter 1, these
components comprise:

• An Intermediate Representation for business process models as a base for
language-independent change management;

• Matching strategies for the identification of corresponding elements between
different process models;

• A suitable Representation of Differences and an approach to Difference de-
tection between different process model versions;

• Dependency Analysis, concerned with the identification of relationships be-
tween individual differences;

• an approach to Equivalence Analysis of different process model versions and
parts of it to identify equivalent modifications;

• Conflict Analysis, comprising detection strategies for syntactic and semantic
conflicts between independently applied changes;

• and finally, a method for Process Model Merging that respects dependencies
and conflicts of differences to obtain an integrated version of a process model.

The above-listed components are described in detail in the following eight chapters.

3

Intermediate Representation

In this chapter, we introduce the intermediate representation (IR) that serves as an
abstraction for concrete process modeling languages to enable change management
of process models independent of language-specific details. In Section 3.1, we dis-
cuss general options for an IR. We describe challenges that need to be addressed
by such an IR and derive requirements for it in Section 3.2. Based on the require-
ments, we then present the syntax and semantics of the intermediate representation
in Section 3.3. In Section 3.4, we focus on the decomposition into fragments as
an integral part of the IR. In Section 3.5, we map exemplary a core subset of the
BPMN to the IR. Finally, we conclude the chapter with a summary and discussion.
The following sections of this chapter are partially based on our earlier publication
[Gerth et al., 2009].

3.1 Options for an Intermediate Representation

Generally, the merging of process models in different languages requires indi-
vidual solutions for change management. That means, change management tech-
niques implemented for process models in a concrete modeling language, such as
BPMN [OMG, 2011a] cannot be easily reused for process models in another process
modeling language, e.g. BPEL [OASIS, 2007].

However, to enable a language-independent approach that reuses implemented
techniques, the core activities of change management including model matching,
difference detection, as well as dependency, equivalence, and conflict analysis, have
to be performed on a common representation of process models, as described in
Chapter 1. In this book, we address this issue by introducing a common representa-
tion for process models in different modeling languages, which we call intermediate
representation (IR).

In general, such an IR can be realized in (at least) two ways: Either the IR covers
all model elements and semantic concepts of concrete modeling languages, i.e. the
IR is complete, comparable to the complete MOF [OMG, 2010c], or the IR is an

36 3 Intermediate Representation

abstraction of concrete modeling languages in the sense of an essential IR, analo-
gously to the essential MOF.

In the case of a complete IR, each model element and semantic concept of a con-
crete modeling language must be represented in the IR. To support a new concrete
language, the IR potentially must be extended to cover also the syntactic and se-
mantic concepts, which are yet not covered. For instance, to cover the BPMN, the
IR also has to provide corresponding model elements for specialized BPMN tasks,
such as Human Task or Service Task.

In contrast to that, an essential IR covers a core subset of process model elements
and the dynamic semantics of process models in terms of token-flow as described
in Section 2.2.3 in Chapter 2. Concrete modeling languages are abstracted to the IR
by reducing their model elements and semantic concepts to the core model elements
provided by the IR. To give an example, the specialized BPMN tasks from above
(Human Task and Service Task) are reduced to a single element in the IR, since they
have the same dynamic behavior, i.e. they pass a token that has been arrived on an
incoming edge to an outgoing edge in the same way. When new process modeling
languages shall be abstracted to the essential IR it is usually not necessary to extend
the IR.

In our solution for process model change management, we prefer the use of an
essential IR as an abstraction of concrete modeling languages for the following rea-
sons: First, an essential IR is less complex than a complete IR and thereby eases
the comparison of process models. Second, an approach to change management of
process models based on an essential IR can be extended to support further process
modeling languages without the need to extend the essential IR.

In the next sections, we establish requirements such an essential IR for process
models in concrete modeling languages has to fulfill.

3.2 Requirements for an Essential Intermediate Representation

As discussed in the previous section, we intend to build the intermediate representa-
tion (IR) as an abstraction of concrete process modeling languages covering a core
subset of essential process model elements. For convenience, we refer to this essen-
tial intermediate representation with the term intermediate representation or IR for
short in the remainder of this book. In this section, we describe potential challenges
that need to be addressed by such an IR and derive requirements an IR for process
models must fulfill, to be suitable for change management of process models.

To enable language-independent change management, it must be possible to
transform process models in concrete modeling languages into process models in
the IR. To that extent, the IR must provide a common core syntax and semantics to
which commonly used process modeling languages, such as BPMN [OMG, 2011a],
UML Activity Diagrams [OMG, 2010b], and BPEL [OASIS, 2007] can be mapped.
An example for such a mapping of model elements in concrete languages to el-
ements in the IR is, e.g. a Switch in BPEL and an Exclusive Decision in combination

3.2 Requirements for an Essential Intermediate Representation 37

with an Exclusive Merge gateway in the BPMN that are mapped to an alternative
branching (i.e. XOR-Split and XOR-Join) in the IR. The different syntactic and se-
mantic concepts of commonly used process modeling languages have to be investi-
gated and mapped to a common representation in terms of the IR.

Moreover, even within a single process modeling language different syntactic el-
ements or compositions of them can be used to model one and the same semantic
concept. On the one hand, these syntactic redundancies, simplify modeling, however
on the other hand, they potentially harden the comparison of different process mod-
els. An example for a syntactic redundancy is the modeling of loops in the BPMN,
which either can be modeled by a dedicated model element called Loop Activity
(post-tested) or by combining an Exclusive Merge and exclusive Decision as shown
in Figure 3.1 (a) and (b).

… XX …

(a) (b)

Loop Activity Exclusive-DecisionExclusive-Merge

Fig. 3.1 An Example for a Syntactic Redundancy in the BPMN: Loop Activity (post-tested)
and composed exclusive Merge and Decision

A further example, concerns control-flow splits in the BPMN, that can be mod-
eled either implicitly or explicitly using control nodes, such as decision or fork.
Figure 3.2 illustrates different ways to model control flow splits and joins in the
BPMN. Here, the process models in Figure 3.2 (a) and (b) use explicit control flow
splits and joins to specify parallel (a) and alternative (b) behavior. The process mod-
els given in the bottom of Figure 3.2 also specify parallel (c) and alternative (d)
behavior. However, there the behavior is modeled by implicit control flow splits and
joins or by a mixture of implicit and explicit elements. These syntactic redundancies
need to be removed by an IR to ease the comparison of different process models.

Last but not least, also the representation of process models is a source of het-
erogeneity and hardens the comparison of process models. Generally, two represen-
tation paradigms can be distinguished: graph-oriented process modeling languages
and block-oriented process modeling languages [Mendling et al., 2006]. The for-
mer languages use edges to define the execution order of activities contained in
the process models. Examples for this type of process modeling languages are the
BPMN, UML Activity Diagrams [OMG, 2010b], or Event-driven Process Chains
(EPC) [Keller et al., 1992]. The latter type of languages specifies the execution order
of activities by nesting basic control elements. A prominent example for a mainly
block-oriented language is BPEL [OASIS, 2007].

In block-oriented languages the hierarchical structure of process models is
explicitly modeled by the nested blocks. For instance, a process model in a

38 3 Intermediate Representation

+
B

X
B

(a) (b)

+ +
C

A D X X
C

A D

+
B

A D

B

C

A D

(d)(c)

C C

Fig. 3.2 Different Ways to model Parallel and Alternative Behavior

block-oriented modeling language may contain a parallel block (e.g. a Parallel
Flow in BPEL) which in turn encloses two alternative blocks (e.g. Switch blocks
in BPEL). This hierarchical structure created by these blocks enables an efficient
comparison of block-structured process models, in particular since the beginning
and the end of a block is well-defined.

In contrast to models in block-oriented languages, process models specified in
graph-oriented languages are more difficult to compare, since their hierarchical
structure is hidden in their graph-like representation and cannot be leveraged for
the comparison. The hierarchical structure of a graph-oriented process model is hid-
den in subgraphs that are spanned by gateways that split and join the control-flow
in a process model. In particular, the beginning and the end of such a subgraph in a
process model is not directly given in a graph-oriented process model and needs to
be analyzed afterwards. The absence of this structural information hardens the iden-
tification of corresponding elements or entire subgraphs in different process models.
For instance, it is difficult to identify corresponding subgraphs with parallel or al-
ternative behavior. To overcome these issues, the IR shall specify the hierarchical
structure of process models explicitly.

Summarized, an intermediate representation that enables a language-independent
solution for change management of process models has to fulfill the following re-
quirements:

R1 The intermediate representation shall serve as an abstraction of commonly used
concrete process modeling languages, such as BPMN [OMG, 2011a], UML Ac-
tivity Diagrams [OMG, 2010b], and BPEL [OASIS, 2007].

R2 The intermediate representation shall not contain syntactic redundancies.
R3 The intermediate representation shall make the implicit hierarchical structure of

process models explicit.

We introduce the syntax and semantics of the intermediate representation and ad-
dress the Requirements R1 and R2 in the next section. The later requirement is
considered in Section 3.4. There, we decompose process models in the intermediate
representation into fragments to make the hierarchical structure of graph-oriented
process models explicit.

3.3 Intermediate Representation for Business Process Models 39

3.3 Intermediate Representation for Business Process Models

In this section, we specify the intermediate representation (IR), which serves
as an abstraction of commonly used concrete process modeling languages, such
as BPMN [OMG, 2011a], UML Activity Diagrams [OMG, 2010b], and BPEL
[OASIS, 2007]. It shall be possible to abstract these concrete languages to the IR
by mapping (a subset of) their elements to the IR. Based on models in the IR, differ-
ence, dependency, and conflict detection are performed on an abstract level enabling
change management that is independent of language-specific details. In the follow-
ing, we first introduce the meta-model of the IR. Then, we consider the semantics
of IR process models.

3.3.1 Syntax of the IR

We develop the intermediate representation starting with generic workflow
graphs (WFG) used e.g. in [van der Aalst et al., 2002, Sadiq and Orlowska, 2000,
Vanhatalo et al., 2007] and an investigation of the Business Process Model and No-
tation (BPMN) as a language that shall be abstracted to the IR. A WFG is a directed
graph consisting of nodes that are connected by edges. Having the abstraction of
BPMN process models into a common representation and our requirements for an
IR in mind, we evolved the generic WFGs into our intermediate representation. Fig-
ure 3.3 shows the meta-model for the IR. Models in the IR consist of a core set of
nodes connected by edges. Nodes comprise activities, events, and gateways to split
and join the control-flow.

The IR covers core elements that model the execution order of activities in a
process model, such as AND/XOR/Undefined-Splits and AND/XOR/Undefined-Joins.
These elementary elements are supported by nearly all process modeling languages
and enable the modeling of sequential, parallel, alternative, looping, and complex
behavior. In block-oriented languages [Mendling et al., 2006], elementary splits and
joins are not modeled directly, but are instead supported by composed model ele-
ments (blocks), e.g. a BPEL Switch structure models alternative behavior. However,
such composed model elements can be reduced to pairs of elementary splits and
joins.

To ensure that IR process models are free of syntactic redundancies (Requirement
R2), we assume that the following constraints hold:

1. Activities and Events have exactly one incoming and one outgoing edge. In the
case, that an activity has multiple incoming/outgoing edges in a concrete mod-
eling language, an appropriate gateway is used to replace the multiple edges.

2. Nodes are connected in such a way that each node is on a path from the IR
Initial to the IR Final.

3. Control-flow splits and joins are modeled explicitly with the appropriate Gate-
ways, e.g. AND-Split, And-Join, XOR-Split, XOR-Join, Undefined-Split, or
Undefined-Join.

40 3 Intermediate Representation

IR Process Model

Element

Edge Node Fragment

Event Activity Gateway

IR Initial

IR Final

AND-Join

AND-Split

XOR-Join

XOR-Split

Undefined-Join

Undefined-Split

Sequential
Fragment

Parallel
Fragment

Alternative
Fragment

Complex
Fragment

*

+incoming

*

+target

1

+source+outgoing

*

Fig. 3.3 Meta-model for the Intermediate Representation

4. Gateways have either exactly one incoming and at least two outgoing edges
(AND-Split, XOR-Split, Undefined-Split) or at least two incoming and exactly
one outgoing edge ((AND-Join, XOR-Join, Undefined-Join)).

5. An IR Initial has no incoming edge and exactly one outgoing edge and an IR
Final has exactly one incoming edge and no outgoing edge.

6. An IR process model contains exactly one IR Initial and exactly one IR Final.

IR Initial and IR Final nodes are necessary to ensure that an IR process model has
a unique start and end node. Unique start and end nodes are needed for the decom-
position of IR process models into fragments [Vanhatalo et al., 2007] to make the
hierarchical structure of the process models explicit. The decomposition of process
models into fragments is addressed in detail in Section 3.4. Please note, that the re-
striction of IR process models to unique start and end nodes, does not exclude the
merging of process models with multiple start and end nodes. In Section 3.5, we
address this issue again, when we abstract BPMN processes to IR process models.

Since IR Initial and IR Final nodes are just a technical necessity to enable the
decomposition of IR process models into fragments, we will not visualize them in
every example process model shown in the remainder of this book. In particular, we
do not not visualize IR Initial and IR Final if an IR process model already unique
start and end node.

3.3 Intermediate Representation for Business Process Models 41

Event
Activity

XOR
Split

XOR
Join

Event

X X
Record

Customer
Data

Compute
Customer
Scoring

Prepare
Bank Card

Prepare
Prepaid

Bank Card

Prepare
Credit Card< 3.5

3.5

IR
Initial

IR
Final

Set Daily
Withdrawal

Limit

S E

Fig. 3.4 Source Process Model of Figure 1.3 in the Intermediate Representation

Figure 3.13 shows the source process model V (Figure 1.3) in the IR. To ease the
understandability of the IR, we use a subset of the BPMN’s concrete syntax also for
the intermediated representation. Only for IR Initial and IR Final, we added suitable
representations to the standard BPMN syntax. Figure 3.5 shows the concrete syntax
for model elements of IR process models.

Having the syntax of the IR at hand, we introduced the semantics of IR process
models in the next section.

Concrete Syntax Semantics

An IR Initial can fire if none of the edges carries a token (i.e. initial state of the
IR). When it executes a single token is added to its outgoing edge. An IR Final can
fire if its incoming edge carries at least one token. Firing of an IR Final removes
all token from all edges in an IR.

Activities, Events, and AND Splits can fire if a token is on their incoming edge.
AND Joins require at least one token on each incoming edge, before they can
fire. When an Activity, an Event, or an AND Split/Join fires the number of tokens
on each incoming edge is decreased by one and one token is added on each
outgoing edge.

An XOR Split can fire whenever a token is on its incoming edge. When a split
fires, one token is taken from its incoming edge and exactly one of its outgoing
edges is selected to which the token is added. The selection of the outgoing
edge is nondeterministic.
An XOR Join can fire if at least one of its incoming edges carries a token. When a
join fires, an incoming edge that carries at least one token is selected non
deterministically. This token is taken from this incoming edge and is added to the
outgoing edge of the XOR Join.

The behavior of Undefined Splits or Joins is not further specified. These
elements are used to represent gateways in a concrete language, whose
behavior is unknown or does not match to the AND/XOR logic of the gateways
presented above. An Undefined Split or Join is always enclosed by a Complex
Fragment.

IR Initial IR Final

AND Split & Join

? ?

Undefined Split & Join

XOR Split & Join

Event
Activity

X X

+ +

S E

Fig. 3.5 Concrete Syntax and Semantics of the Intermediate Representation

42 3 Intermediate Representation

3.3.2 Semantics of the IR

We define the semantics of the IR similar to the semantics of Petri
nets [Murata, 1989] in terms of token flow. The nodes of the IR represent the tran-
sitions of a Petri net, and the edges are the places of the Petri net. A state of the
IR can then be described as the number of tokens carried by the edges of an IR.
In Figure 3.5, we informally describe the behavior of important elements of the IR
following mainly the semantics defined in [Vanhatalo et al., 2008].

The textual specification of the IR’s semantic provides a first overview of the be-
havior of IR process models. However, the specification is too informal and impre-
cise to be helpful for the abstraction of concrete process modeling languages to the
IR. As a consequence, we specify the semantics of the IR by applying the Dynamic
Meta Modeling approach (see Section 2.2.3 in Chapter 2), to formally determine the
behavior of IR process models.

For that purpose, we first integrate the concept of token-flow into the meta-model
of the intermediate representation. Thereby, we obtain a runtime meta-model that
can be used to describe the dynamic semantics of IR process models in terms of
DMM rules. Figure 3.6 shows the runtime meta-model of the IR. The execution of
an IR Process is controlled by an IR ProcessExecution consisting of Tokens. States
of an IR process are described by Tokens that are carried by Nodes.

Based on the runtime meta-model of the IR, we can now specify DMM rules.
DMM rules are typed graph transformation rules that specify the behavior of indi-
vidual model elements of the IR. The rules shown in Figures 3.7 and 3.8 specify the
semantics of IR Initial and IR Final nodes. The IR Initial rule starts the execution of
an IR process model. For that purpose, it generates a token, which is carried by its
outgoing edge if no token is carried by an edge or a node in an IR process model.
Analogously, an IR Final terminates the execution of an IR process model.

The dynamic behavior of Activities and Events is described by the DMM rule
shown in Figure 3.9. A token on the incoming edge of an activity or event is passed
to the outgoing edge.

Analogously, the behavior is defined for XOR-Splits and XOR-Joins. Figure 3.10
shows the DMM rule of an XOR-Split. The rule is applied if a token arrives on an
incoming edge of an XOR-Split and passes the token through the gateway on an
outgoing edge in a non-deterministic way.

The respective DMM rules of AND-Splits and AND-Joins are specified in Fig-
ures 3.11 and 3.11.

Finally, we let the behavior of Undefined-Splits and Undefined-Joins of IR
process models unspecified. As their naming suggests, the behavior of these
gateways is not fixed, since they act as wildcards for gateways of concrete pro-
cess modeling languages, whose behavior is either unknown or complex. In Sec-
tion 3.5 of this chapter, we will exemplary abstract BPMN Inclusive Gateways
and Complex Gateways to Undefined-Splits and Undefined-Joins of IR process
models.

In the next section, we show how an IR process model is decomposed into frag-
ments.

3.3 Intermediate Representation for Business Process Models 43

IR Process Model

Element

Edge Node Fragment

Event Activity Gateway

IR Initial

IR Final

AND-Join

AND-Split

XOR-Join

XOR-Split

Undefined-Join

Undefined-Split

Sequential
Fragment

Parallel
Fragment

Alternative
Fragment

Complex
Fragment

IR ProcessExecution

Token

0..*

*

+incoming

*

+target

1

+source+outgoing

*

0..*

executes

1

1

carries

0..*

Fig. 3.6 Runtime Meta-model for the Semantics Specification of the Intermediate Represen-
tation

:Edgeinitial :IR Initial

:Token

{new}

{new}

carries

+source +outgoing

Fig. 3.7 DMM Rule that specifies the Behavior of an IR Initial

:Edge

:Token

{destroyed}

{destroyed}

final :IR Final
+incoming +target

carries

Fig. 3.8 DMM Rule that specifies the Behavior of an IR Final

44 3 Intermediate Representation

:Edge :Edge

{destroyed}

{new}

:Token

activity :Activity

carries

+incoming +target +source +outgoing

carries

Fig. 3.9 DMM Rule that specifies the Behavior of Activities and Events

xorSplit :XOR-Split:Edge :Edge

{destroyed}

{new}

:Token carries

+incoming +target

carries

+source +outgoing

Fig. 3.10 DMM Rule that specifies the Behavior of an XOR-Split

:Edge
:Edge :Edge

{destroyed}

{new}

:Token

andSplit :AND-Split

carries

carries

+incoming +target +source +outgoing

Fig. 3.11 DMM Rule that specifies the Behavior of an AND-Split

:Edge
:Edge :Edge

{destroyed}

{new}

:Token

andJoin :AND-Join
+source +outgoing

carries

+incoming +target

carries

Fig. 3.12 DMM Rule that specifies the Behavior of an AND-Join

3.4 Decomposition into Fragments 45

3.4 Decomposition into Fragments

So far, we have defined the syntax and semantics of the IR that shall serve as a com-
mon representation for process models (Requirement R1). By removing syntactic
redundancies in the IR, we have addressed Requirement R2. In this section, we con-
sider Requirement R3 and present an approach to make the hierarchical structure of
process models explicit to provide a suitable base for process model comparison.

Since the intermediate representation is a graph-oriented language, the hierarchi-
cal structure of process models in the IR is hidden in subgraphs that are spanned by
gateways that split and join the control-flow in the process models. These subgraphs
need to be identified to make the hierarchical structure of a process model explicit
for two reasons: First, the knowledge about distinct subgraphs that constitute the
hierarchical structure of a process model is a prerequisite for the identification of
corresponding subgraphs between different process models that is used in process
model matching.

Second, based on the subgraphs, we can establish relationships between the gate-
ways that begin and end such a subgraph, which is beneficial to merge different pro-
cess models. To give an example, consider the subgraph fA that specifies alternative
branching shown in Figure 3.13. Further, this subgraph that begins with the XOR-
Split and ends with the XOR-Join shall constitute a difference between two process
models. If this difference shall be resolved during the merging of the two process
models, we have to take care that the complete subgraph is inserted in the integrated
process model. As a consequence, both gateways (XOR-Split and the XOR-Join)
have to be inserted together, otherwise the integrated process model would not be
connected.

To make the implicit hierarchical structure of IR process models explicit, we
decompose IR process models into single-entry-single-exit fragments (SESE) that
have a single entry edge and a single exit edge in IR process models. SESE frag-
ments are known from compiler theory and are originally used to compute the con-
trol dependence equivalence relation. In [Johnson et al., 1993], an approach is de-
scribed to compute SESE fragments in linear time. Within a SESE fragments more
fragments can be enclosed. In [Johnson et al., 1994], a proof is presented showing
that SESE fragments do not overlap, i.e. two fragments are either nested or disjoint.
We define SESE fragments for IR process models as follows:

Definition 1 (Single-Entry-Single-Exit Fragment). (based on
[Johnson et al., 1994]) Let G be an IR process model with distinguished nodes IR
Initial and IR Final, such that every node is on a path from IR Initial to IR Final. Two
distinct nodes x and y in the IR process model G enclose a single-entry-single-exit
fragment if

• x dominates y, i.e. every path from IR Initial to y includes x, and
• y postdominates x, i.e. every path from x to IR Final includes y, and
• every cycle containing x also contains y and vice versa.

46 3 Intermediate Representation

Recently, SESE fragments have been used successfully in the domain of process
modeling [Vanhatalo et al., 2007] to check soundness of control-flow (i.e. to show
the absence of deadlocks and lack of synchronization).

In general, process models can be decomposed into SESE frag-
ments [Vanhatalo et al., 2007]. Figure 3.13 shows a SESE decomposition of
the source process model V (Figure 1.3) into canonical fragments. Fragments are
visualized by a surrounding of dotted lines. The alternative structure starting with
the exclusive Decision and ending with the exclusive Merge is enclosed by the
fragment fA. Its branches are enclosed by the fragments fB and fC . The fragment
froot, which encloses the entire process model, is also considered as a SESE
fragment which we refer to as root fragment.

Event
Activity

XOR
Split

XOR
Join

Event

X X
Record

Customer
Data

Compute
Customer
Scoring

Prepare
Bank Card

Prepare
Prepaid

Bank Card

Prepare
Credit Card< 3.5

3.5

froot

fA

fB

fC

IR
Initial

IR
Final

Set Daily
Withdrawal

Limit

S E

Fig. 3.13 Source Process Model of Figure 1.3 decomposed into Single-Entry-Single-Exit
Fragments

For process merging, we define the set of canonical frag-
ments [Vanhatalo et al., 2007] of process models and distinguish between
different types of fragments as follows:

• a sequence has no AND/XOR/OR-Gateways as children. Further, a sequence is
maximal, i.e., neither a preceding nor a succeeding model element can be added
to the sequences. For example, in Figure 3.13, froot, fB, and fC are sequences.

• a parallel fragment does not contain any cycles and has no XOR/OR-Gateways
as children.

• an alternative fragment and an alternative loop have no AND/OR-Gateways as
children. For example, in Figure 3.13, fA is an alternative fragment.

• a complex fragment is any other fragment that is none of the above.

We denote the set of canonical SESE fragments F (V) for a given process model V .
Further, we consider a fragment as being structured if it consists of matching pairs
of nodes that split and join the control flow. Otherwise, it is considered as being
unstructured. Given a fragment f ∈ F (V), we denote by type(f) the type of the
fragment and by parent(f) the parent fragment. Similarly, given a node x ∈ N, we
denote by type(x) the type of the node and parent(x) the parent fragment of x. For
example, type(“Prepare Bank Card”) = Activity means that “Prepare Bank Card”
is an Activity node and parent(“Prepare Bank Card”) = fB means that “Prepare
Bank Card” is contained in the fragment fB.

3.5 Abstraction of BPMN to the Intermediate Representation 47

froot

fA

fB
XOR
Split

XOR
Join

Record
Cust.
Data

Initial Final

fC

Compute
Cust.
Scoring

Prepare
Bank
Card

Prepare
Credit
Card

Prepare
Prepaid

Bank Card

Set Daily
Withdrawal

Limit

Fig. 3.14 Process Structure Tree
(PST)

By decomposing process models into canon-
ical fragments, the hierarchical composition
structure of fragments becomes explicit and
can be used to compare process models effi-
ciently. The hierarchical structure can be visu-
alized by organizing the canonical fragments
of a process model V into a process structure
tree (PST) [Vanhatalo et al., 2007], denoted by
PS T (V), according to the composition hierar-
chy of the fragments (see Figure 3.14 for the
tree obtained for the source process model V
from Figure 1.3). If a fragment f1 contains an-
other fragment f2 (respectively node n), then f1 will be the parent of fragment f2
(node n) in this tree and fragment f2 (node n) will be one of its children. Further, the
root of the tree is the root fragment.

In the next section, we map BPMN processes to IR process models.

3.5 Abstraction of BPMN to the Intermediate Representation

In this section, we abstract exemplary the Business Process Model and Nota-
tion (BPMN) to the IR by defining a mapping of a core subset of BPMN ele-
ments to IR elements. This section is partially based on our earlier publication
[Gerth et al., 2009].

For the abstraction of a concrete modeling language into the IR, we have to define
a mapping between elements of the concrete language and elements of the IR. To
ensure that each process model in a concrete modeling language (here a core subset
of BPMN) can be mapped to a model in the IR, each model element of the concrete
modeling language needs to be mapped to an element in the IR. Otherwise models in
a concrete modeling language can be created that cannot be merged based on the IR.

To ensure such a mapping between a concrete modeling language and the IR, we
map iteratively each model element of a concrete language to the IR. In trivial cases
this can be done one-by-one, e.g. a BPMN Task is mapped to an IR Activity. In other
cases, single model elements cannot be mapped in isolation, because a group of
model elements corresponds to an IR element or a group of IR elements corresponds
to a concrete element. Then, those groups of elements need to be mapped together.
For instance, a BPMN Loop Activity is mapped to several model elements in the IR.

For the abstraction of BPMN models into IR models, we consider a core subset of
BPMN elements that covers fundamental Activities, such as Tasks, Sub-Processes,
and Loops, Events, such as Start Events, Intermediate Events, and End Events, as
well as Gateways, such as Parallel Gateways, Exclusive Gateways, Inclusive Gate-
ways, and Complex Gateways. The elements are connected by BPMN Sequence
Flow and may optionally be related by Data Associations.

The actual mapping of the BPMN elements to the IR elements is done in a
semantic-driven way by inspecting the behavior of the BPMN model elements and

48 3 Intermediate Representation

mapping them to suitable IR model elements. For that purpose, a precise and for-
mal semantic specification of the concrete modeling language is beneficial that can
be compared to the semantic specification of the IR introduced in Section 3.3.
Thereby, semantically corresponding model elements between the concrete mod-
eling language and the IR can be identified more efficiently and mapping errors can
be avoided.

BPMN Element IR Element BPMN Element IR Element BPMN Element IR Element

TaskStart End

Sequence Flow

Data AssociationEvent Activity
Edge

Intermediate

Service Task

Human Task Send Task

Fig. 3.15 Mapping of BPMN Tasks, Events, and Connections to IR Elements

Figure 3.15 illustrates the mapping of BPMN atomic activities, events, and con-
nections which are mapped onto corresponding IR elements. BPMN Tasks are
mapped to IR activities. BPMN events are abstracted to the IR event element. Please
note that BPMN Start Events and End Events are mapped to IR Events although their
semantics slightly differs. In IR process models, the individual BPMN start and end
events are treated like intermediate events, since the execution of an IR process
model is started and terminated by a unique IR Initial and IR Final events, which
precede (resp. succeed) BPMN Start Events and End Events in IR process models.
As described above, unique start and end nodes are necessary to enable a decompo-
sition of process models into fragments. In the case of BPMN processes that have
multiple start or end nodes, the obtained IR process model must be refactored and
completed. To that extend, the approach presented in [Vanhatalo et al., 2008] can be
used, which rejoins multiple start and/or end nodes with unique IR Initial and IR
Final events. Finally, BPMN Sequence Flow and Data Associations are abstracted
to IR edges.

The mapping of BPMN gateways is shown in Figure 3.16. BPMN Inclusive Gate-
ways and Complex Gateways are abstracted to Undefined-Split/Join elements of the
IR. The mapping of BPMN Exclusive Gateways and Parallel Gateways is straight-
forward. Two or more incoming (outgoing) edges of a BPMN element, which is
not a gateway, represent an implicit Parallel Fork (Exclusive Merge). These implicit
gateways are syntactically different from explicit exclusive and parallel gateways,
but semantically equivalent. According to Requirement R2, we map semantically
equivalent implicit and explicit gateways to the same IR elements, as illustrated in
the bottom row of Figure 3.16.

Finally, BPMN compound activities, such as Sub-Processes and Loops, are
mapped as illustrated in Figure 3.17. Compound activities are flattened during the
abstraction, i.e. they are integrated in-line in the IR. However, their hierarchical in-
formation is preserved by enclosing the compound activities with fragments in the
IR. BPMN Sub-Processes are represented by sequential fragments in the IR. The in-
coming and outgoing edge of a sub-process is directly connected to its start and end

3.5 Abstraction of BPMN to the Intermediate Representation 49

BPMN Element IR Element BPMN Element IR Element

+

Parallel-Fork

+

Parallel-Join

Implicit-Parallel-Fork

X X

Exclusive-Decision Exclusive-Merge

Complex-Decision Complex-Merge

Inclusive-Decision Inclusive-Merge

XOR-Split XOR-Join

Activity w. AND-Split

?
?

Undefined-Split
Undefined-Join

AND-Split AND-Join

Implicit-

Exclusive-Merge XOR-Join w. Activity

X

+ +

X

+ X

Fig. 3.16 Mapping between BPMN Gateways and IR Splits and Joins

events, represented by IR Events. BPMN Loops are abstracted into a combination
of IR XOR-Join and XOR-Split that is enclosed by an alternative fragment as shown
in Figure 3.17. The XOR-Split takes the decision whether the loop is repeated or the
loop is exited.

BPMN Element IR Element BPMN Element IR Element

…

Sub-Process

+

… …

Loop
…

X X

Fig. 3.17 Mapping of BPMN Sub-processes and Loops to IR Elements

The presented mapping fulfills the requirements for an abstraction of a concrete
language to the IR, because each element of the core subset of BPMN is mapped
to the IR (Completeness). In addition, Requirement R2 (Syntactic Redundancy

50 3 Intermediate Representation

Elimination) is fulfilled, because different syntactic ways that model the same se-
mantic concept (e.g. implicit/explicit BPMN Parallel Fork or Exclusive Merge) are
abstracted to their respective counterparts in the IR. Using the mapping, models in
the core subset of BPMN can be abstracted to IR process models.

3.6 Summary and Discussion

In this chapter, we have introduced the intermediate representation that serves as
a common representation of process models in different modeling languages. Us-
ing the intermediate representation, we aim to generalize our solution for change
management of process models to support the commonly used modeling lan-
guages BPMN [OMG, 2011a], UML Activity Diagrams [OMG, 2010b], and BPEL
[OASIS, 2007].

First, we discussed different options for an intermediate representation and de-
rived requirements for an IR. We defined the syntax of the IR in terms of a meta-
model and specified the semantics of IR process models formally using typed graph
transformation rules. We introduced an approach for the decomposition of process
models into fragments, which enclose nested subgraphs with distinguished behav-
iors. Thereby, we made the implicit structure of IR process models explicit, which
helps to harmonize block-oriented and graph-oriented process modeling languages.
Finally, we described a mapping of a core subset of the BPMN to the IR.

The abstraction of concrete modeling languages to the IR enables us to compare
and analyze process models for the purpose of change management - independent
from the concrete modeling languages of the process models. However, an abstrac-
tion of a concrete language is always a trade-off between differences that can be
detected on the level of the abstracted process models and differences that need
further interpretation on the level of the process models in their concrete modeling
language. For instance, on the level of the IR, we can identify a difference concern-
ing an activity, however if the activity represents a BPMN human task or a BPMN
service task must be determined in the level of the concrete modeling language. On
this account, differences identified based on the IR need to be translate back into dif-
ferences of process models in a concrete modeling language. We address this issue
in Chapter 10.

In the next chapter, we introduce matching approaches and strategies for process
models.

4

Matching

In the previous chapter, we have introduced the intermediate representation for busi-
ness process models to enable change management of process models independent
of their process modeling language. In this chapter, we present an approach to match
process models in the intermediate representation. Matching considers the identifi-
cation of related information, in order to identify corresponding model elements
between two process models. The result of a matching is a mapping, which links
related elements contained in different models. Based on a mapping differences and
equivalences between process models can be computed.

The remainder of this chapter is structured as follows: First, we establish require-
ments for a solution to process model matching. Then, we evaluate existing strate-
gies to model matching with respect to their usability for process model matching.
In Section 4.3, we introduce the concept of correspondences to link related model
elements. We present our approach to process model matching in versioning scenar-
ios in Section 4.4. Finally, we conclude with a summary and discussion.

4.1 Requirements for Process Model Matching

In this section, we consider specific challenges that an approach for process model
matching has to address. Based on these challenges, we derive general requirements
for process model matching. The requirements are independent of the intermediate
representation, which we use to abstract from process models in a concrete modeling
language. However, we will show in the course of this chapter how the IR helps to
fulfill our requirements for process model matching.

In general, merging different business process models requires the determination
of relationships between process models and contained model elements. For that
purpose, different process models need to be compared automatically to identify
contained corresponding model elements. This comparison is typically called model
matching and results in a mapping between two process models.

Based on such a mapping, differences between different process models are de-
rived, which describe how one model can be transformed into the other. Thereby,

52 4 Matching

the quality of the mapping is important to ensure a correct set of differences. As a
consequence, the matching of process models must result in a precise mapping that
identifies all corresponding elements between two process models.

For that purpose, a solution to process model matching has to address the follow-
ing challenges: First, process models typically contain several elements, which are
difficult to distinguish since they basically share the same set of attributes. Examples
for such elements are gateways, edges, or start and end events. These elements are
difficult to match based on their own attributes.

A common approach to match these underspecified model elements is to identify
them based on their environment. For instance, operations in class diagrams that
share the same name, can usually be distinguished based on the following infor-
mation: their input and output parameters, their privacy attribute, their parent class,
and their parent package. Based on these parameters and the path information, two
operations usually can be matched uniquely even if they share the same name.

In contrast to structured models, such as class diagrams, process models typically
show a very flat hierarchical structure and often do not provide enough information
that could be used to match equal elements. For instance, gateways are contained
in a process, which may additionally be structured by nested sub-processes. How-
ever, since several gateways of the same type may be contained within a single
(sub-)process, corresponding gateways cannot be identified based on the enclos-
ing (sub-)process uniquely. Moreover, incoming and outgoing edges of gateways
do not provide much help to match gateways too, since they are usually identified
and matched based on the elements they connect, i.e. edges are matched after the
matching of gateways.

A second issue that makes process model matching difficult are implicit relation-
ships between elements contained in a single process model. To give an example, we
consider a graph-oriented process model. An implicit relationship exists between a
gateway that splits the control-flow of the process model into two or more flows and
the gateway that joins these flows again. Differences between two process models
that occur due to modifications of these gateways (e.g. as a result of their insertion
into one of the process models) need to be resolved together, otherwise unconnected
process models may be obtained. The knowledge about these implicit relationships
should already be gained during model matching to simplify the later detection of
differences.

To summarize, an approach to match different process models has to fulfill the
following requirements:

R1 (Mapping between two process models) A solution for process model matching
shall compute a mapping between corresponding model elements in two given
process models V and Vi automatically.

R2 (Underspecified model elements) In particular, correspondences between under-
specified process model elements, such as gateways, shall be identified.

R3 (Implicit relationships) Implicit relationships between splitting and joining gate-
ways within a single process model shall be identified.

4.2 Evaluation of Existing Matching Approaches for Process Model Matching 53

In the next section, we evaluate existing approaches to model matching whether they
are suitable for the matching of process models.

4.2 Evaluation of Existing Matching Approaches for Process
Model Matching

In the following, we evaluate existing matching approaches with respect to our re-
quirements for the matching of process models. We distinguishes between identity-
based and similarity-based matching approaches, following roughly the classifica-
tion of model matching approaches proposed in [Kolovos et al., 2009].

4.2.1 Identity-Based Matching Approaches

Identity-based matching approaches match model elements based on a compari-
son of their static attributes, such as a unique model ID or based on equal names.
If model elements do not have unique attributes, model elements can be matched
based on a comparison of several of their attributes or their associations. The set of
attributes and associations together is considered as the model elements signature
[Kolovos et al., 2009] and may comprise a unique identifier for a model element.
The result of identity-based approaches is a binary value, either two model elements
match or they do not match.

Examples for identity-based matching approaches are [Alanen and Porres, 2003]
or [Ohst et al., 2003], which rely on unique identifiers for the matching of MOF-
based models. In [Reddy and France, 2005], model elements of UML class di-
agrams are identified and matched based on a comparison of several of their
attributes.

The advantage of identity-based matching approaches is their simplicity and
their speed. For the matching of process models, an initially applied identity-based
matching approach can be used to compute a mapping between model elements
with unique and equal names, such as activities and intermediate events. Moreover,
model elements without a unique identifier but with a suitable signature based on
several of their attributes that substitutes a unique identifier can be matched. An ex-
ample for model elements in process models that can be matched by their signature
are edges, whose source and target nodes often constitute a unique identifier. How-
ever, an identity-based approach is not suited to identify synonyms/homonyms or to
identify correspondences between process model elements that usually do not have
unique identifiers or a signature, such as gateways.

To summarize, an identity-based approach for process model matching partially
fulfills Requirement R1 but does not fulfill Requirements R2 and R3.

4.2.2 Similarity-Based Matching Approaches

In contrast to the previous approach that results in a binary value, similarity-
based matching approaches compute a quantified value between 0 (no

54 4 Matching

similarity) and 1 (identity) for model elements. A similarity value can be com-
puted for single attributes such as the name of a model element, e.g. by com-
puting the Levenshtein distance [Levenshtein, 1966]. For multiple attributes or
associations of a model element a composed similarity value can be com-
puted that may additionally be weighted. Examples for similarity-based match-
ing approaches are [Ehrig et al., 2007, Nejati et al., 2007, Xing and Stroulia, 2005,
Rosa et al., 2010]. EMF compare [Eclipse Foundation, 2011c] is a popular tool that
uses a matching approach that is close to the similarity-based approach presented
in [Xing and Stroulia, 2005], which computes a similarity value for model elements
by analyzing the element’s name, content, type, and its relations to other elements.
The approach presented in [Treude et al., 2007] identifies similarities between UML
models according to their tree-like structure. By iterating the tree representation of
a model, a composed similarity measure is computed based on weighted similarities
of model element attributes and relations. Similarly in [Chawathe et al., 1996], an
algorithm for the matching of versions of tree-structured data is presented, which
considers similarity of node names and their position in the tree-structure.

In [Nejati et al., 2007] state charts are matched in a similarity-based ap-
proach. In general, similarity-based matching approaches are well-suited to iden-
tify corresponding model elements between process models that are labeled
with strings. In combination with ontologies, such as the Wordnet::Similarity
package [Pedersen et al., 2004], even synonyms and homonyms can be identified
[Ehrig et al., 2007, Nejati et al., 2007]. In the case of gateways and other model el-
ements in process models that cannot be identified based on their own attributes,
correspondences can be identified partially with this approach by measuring the
similarity of their environment. For instance, by matching pairs of gateways of the
same type, whose preceding and succeeding model elements have the most corre-
spondences among each other [Rosa et al., 2010]. In [Weidlich et al., 2010] a com-
prehensive framework (ICOP) for the matching of activities in process models is
presented. The approach is capable to identify correspondences between an activity
and a group of activities. However, the suitability comes with the price of computa-
tional complexity, since potentially all model elements of a certain type need to be
compared with each other to compute their similarity degree.

Concerning our set of requirements, Requirements R1 and R2 are fulfilled. Anal-
ogously, to the identity-based approach, a similarity-based matching approach can-
not identify implicit relationships between model elements within a single process
model and thus does not fulfill Requirement R3.

4.2.3 Summary

As we have seen, none of the presented approaches on its own is suitable to address
all our requirements for process model matching completely. In particular, existing
approaches miss to fulfill Requirements R2 and R3. That means, the approaches
have difficulties to match gateways in graph-oriented process models and to estab-
lish their implicit relationships within a single model.

4.3 Data Structure for Model Matching 55

Based on models in the intermediate representation, we propose an approach
that overcomes these issues. Our approach combines identity-based and similarity-
based approaches for the matching of process models. We identify correspondences
between underspecified model elements leveraging the decomposition of process
models into fragments as introduced in Chapter 3 and establish mappings between
the fragments. Thereby, gateways that belong together are contained in correspond-
ing fragments that can be used to match gateways between different process model
versions.

We give a general overview of matching in versioning scenarios and present our
approach to match models in the IR in Section 4.4. In the next section, we introduce
a model to represent correspondences between process models.

4.3 Data Structure for Model Matching

In this section, we introduce a model to express relationships between matched
model elements of business process models. In the following, we refer to relation-
ships between model elements as correspondences [Pottinger and Bernstein, 2003].
Correspondences are contained in a mapping that defines how two models and their
contained elements are related.

To represent specific correspondences between model elements in order to de-
scribe the relation between two models, a model to represent correspondences is
needed. Existing frameworks such as EMFcompare [Eclipse Foundation, 2011c] or
Atlas Model Weaver (AMW) [Eclipse Foundation, 2009] provide standard solutions
for the representation of correspondences.

Similar to these existing match models, we use a mapping model defined over
the meta-model shown in Figure 4.1 to represent correspondences between different
process model versions. A Mapping is created between two process model versions
in the intermediate representation and consists of a set of Correspondences be-
tween different Elements in the IR process models. Mapping and correspondences
are defined in the remainder of this section.

Mapping
primaryProcessModel

secondaryProcessModel

Intermediate Representation
Process Model

*

Correspondence
primaryModelElement

secondaryModelElement
Element

*

1 to 0
Correspondence

1 to 1
Correspondence

0 to 1
Correspondence

Fig. 4.1 Meta-model of a Mapping between IR Process Models

56 4 Matching

For the following discussion, we assume that two process models V and Vi in
the intermediate representation (IR) are given. A correspondence is a link between
two model elements in the business process model V and Vi. In general, a model
element in one process model is connected by a correspondence to a model element
in another process model if the first model element represents the other model el-
ement and vice versa. Based on the number of connected elements, we distinguish
the following types of correspondences:

Definition 2 (Correspondences). Let V and Vi be two business process models in
the intermediate representation. Further let x and y be two model elements. Then
the following types of correspondences can be established between x and y:

• A (1 − 1) correspondence connects two elements x, y in V and Vi if x represents
y and vice versa.

• A (1− 0) correspondence is attached to an element x in V if x is not represented
by an element y in Vi.

• A (0−1) correspondence is attached to an element y in Vi if y is not represented
by an element x in V.

Correspondences are bidirectional. That means if one model element x corresponds
to another model element y, then y also corresponds to x.

In addition to the types of correspondences introduced in Definition 2, there may
be correspondences representing relationships between sets of model elements. For
instance, a (1−n) correspondence may represent the refinement of a single model el-
ement in one process model into a set of model elements in another model. Similarly,
a (n − 1) correspondence may represent the abstraction of a set of model elements
into a single model element in the other process model. Finally, a (n−m) correspon-
dence may represent relationships between two sets of model elements. An auto-
mated computation of these types of relationships between model elements during
matching is challenging and computational hard, due to the exponential increasing
number of potential matching sets of model elements. In [Weidlich et al., 2010], a
framework is described for the automated detection of (1−n) and (n−1) correspon-
dences between activities in different process models based on different heuristics.
The framework is in particular beneficial for the matching of process models that do
not have a common source version.

In the versioning scenario considered in this book, we address relationships be-
tween sets of elements such as refinement and abstraction using several correspon-
dences between single model elements. For instance, let us assume that a model
element x ∈ V corresponds to y ∈ Vi. Then Vi is altered by replacing y with v and w.
In this case, x does not correspond to v and w, rather x has no counterpart since its
former counterpart y was removed. Thus, x is attached to a (1 − 0) correspondence.
v and w however are attached to (0 − 1) correspondences. In the remainder, we do
not consider (1 − n), (n − 1), or (n − m) correspondences.

We introduce the set of (1 − 1) correspondences that connect model elements in
V and Vi and denote this set by C1−1(V,Vi). Further, we denote the set of (1 − 0)

4.4 Matching in Versioning Scenarios 57

correspondences by C1−0(V,Vi). Similarly, we denote the set of (0 − 1) correspon-
dences as C0−1(V,Vi).

Correspondences can be classified according to the type of model elements they
connect. We distinguish between correspondences that connect edges, nodes, and
fragments. All correspondences between two process models together comprise a
mapping between the process models. A mapping between two process models is
defined next:

Definition 3 (Mapping). Let two business process models V, Vi in the intermediate
representation be given. We define mapping M(V,Vi) to be the following sets of
correspondences between elements of V and Vi:

• CE
1−0(V,Vi), CE

0−1(V,Vi), and CE
1−1(V,Vi) containing correspondences between

edges.
• CN

1−0(V,Vi), CN
0−1(V,Vi), and CN

1−1(V,Vi) containing correspondences between
nodes.

• CF
1−0(V,Vi), CF

0−1(V,Vi), and CF
1−1(V,Vi) containing correspondences between

fragments.

Based on the correspondence types we are able to detect inserted and deleted model
elements between business process models, which are examined in detail in Chap-
ter 6. In the next section, we describe how a mapping is established in versioning
scenarios and present a concrete example.

4.4 Matching in Versioning Scenarios

In this section, we consider the matching of different process models in versioning
scenarios. Parts of the presented matching approach have been published in one of
our earlier publications [Gerth et al., 2011b].

In a versioning scenario, different versions of a process model are matched by
considering a common ancestor version. In contrast to matching scenarios where no
common ancestor exists, in versioning scenarios a partial mapping can be computed
automatically. This partial mapping is based on the model elements that already
exist in the common ancestor and leverages the computation of a complete mapping.
In the following, we first give an overview of versioning scenarios and describe
which mappings need to be computed between versions of process models. Then,
we present the steps of our matching approach in Section 4.4.2.

4.4.1 Overview

In versioning scenarios, different versions of a process model need to be matched
by considering a common ancestor version. Figure 4.2 visualizes such a scenario
(see also Figure 1.3). A source version V of a business process model is developed
independently by different users. Therefore, V is first copied into the versions V

′
,V

′′
,

e.g. by checking V out of a repository into the local workspace of a user. Then, these

58 4 Matching

versions are individually developed into the versions V1, V2 by applying change
operations. For the creation of a merged version VM, the changes applied to V1

and V2 must be considered. For that purpose, the process model versions must be
matched in order to identify corresponding model elements. In particular, we are
interested in the following three mappings:

• a mappingM(V,V1) between the process model versions V and V1,
• a mappingM(V,V2) between the process model versions V and V2,
• and finally, a mappingM(V1,V2) between the process model versions V1 and V2.

V

V’ V’’

copy copy

change change
M(V, V1) M(V, V2)

VM

V1 V2

M(V1, V2)

Fig. 4.2 Versioning Scenario

The mappings M(V,V1) and M(V,V2) are re-
quired for the detection of differences between
the process models V,V1 and V,V2. The map-
ping M(V1,V2) is a prerequisite for the identi-
fication of conflicting differences between the
process model versions V1 and V2 in order to
obtain a merged process model VM.

Figure 4.3 gives an overview of our match-
ing approach for process model versions. The
output of the approach are three complete map-
pings between the process model versions V,V1,

and V2. We first compute partial mappings M(V,V1) and M(V,V2). In contrast to
matching scenarios where no common ancestor exists, in versioning scenarios such
partial mappings can be computed automatically. We consider a mapping to be par-
tial if it only contains (1 − 1) correspondences between model elements that are
already existing in the common ancestor version V and are unchanged in the ver-
sions V1 or V2.

Compute Partial
MappingM(V V)

Complete
MappingM(V V)MappingM(V, V1) MappingM(V, V1)

Derive Partial
Mapping M(V1, V2)

Complete
MappingM(V1, V2)

Compute Partial
MappingM(V, V2)

Complete
MappingM(V, V2)

Fig. 4.3 Overview of our Matching Approach in Versioning Scenarios

In a second step, we complete the partial mappingsM(V,V1) and M(V,V2) by
matching model elements that were newly added to or modified in one of the
versions V1 or V2. Thirdly, we automatically derive a partial mapping M(V1,V2)
between the versions V1 and V2 based on the complete mappings M(V,V1) and
M(V,V2). Finally, we complete the mappingM(V1,V2).

The following sections, introduce each step in detail. We begin with the com-
putation of partial mappings M(V,V1) and M(V,V2) in the next section. In

4.4 Matching in Versioning Scenarios 59

Section 4.4.3, we complete these mappings and derive a partial mappingM(V1,V2)
in Section 4.4.4.

4.4.2 Computation of Partial Mappings

The creation of partial mappings between the process models V,V1, and V,V2 is
divided into two steps. In a first step, we initially create the partial mappings, when
new versions of a process model V are created. In the second step, we updated the
partial mappings after the modification of the new versions V1 and V2 and obtain
mappingsM(V,V1) andM(V,V2). The two steps are described in the following.

Step 1: Creation of a Partial Mapping

In a versioning scenario, a partial mapping is constructed when the business process
model version V is copied, e.g. into the local workspace of a developer during the
check-out process. (see Figure 4.2). After the copying, identical pairs of process
models V,V

′
and V,V

′′
exist1. For each edge, node, and fragment contained in V a

(1 − 1) correspondence is created, which connects the model element in V with its
counterpart in V

′
(or V

′′
respectively). All (1−1) correspondences together constitute

the initial mappingsM(V,V
′
) andM(V,V

′′
) of the identical pairs of process models

V,V
′

and V,V
′′
.

Figure 4.4 shows the source process model V of our example and its copy V
′′
.

Arrows between identical model elements represent (1−1) correspondences. (1−1)
correspondences also exist between edges and fragments of V and V

′′
but are not

visualized due to readability reasons.
In the following section, we propose an algorithm that updates these mappings

after the modification of the versions V
′

V
′′

into versions V1 and V2.

Step 2: Update of a Partial Mapping

In the versioning scenario presented in Figure 4.2, we assume that the process model
version V

′
is modified into version V1 and V

′′
is modified into version V2. In order

to reflect the applied modifications, the initially created partial mappingsM(V,V
′
)

andM(V,V
′′
) need to be updated into the mappingsM(V,V1) and M(V,V2). That

means, for each correspondence we have to check whether the model elements it
connects, still exist in both versions of the process model and add new correspon-
dences for newly inserted model elements, which are not attached by a correspon-
dence. A mapping can be updated automatically by the following algorithm given
in Listing 1.

The update algorithm checks for each (1 − 1) correspondence c contained in
M(V,Vi), whether the underlying model elements of the correspondence still exist
in Vi and was not modified. If a model element no longer exists in Vi, we assume that
the element was deleted from this version and remove the correspondence c from

1 We assume that the functionality of a model element does not change when it is copied.

60 4 Matching

X X
Record

Customer
Data

Compute
Customer
Scoring

Prepare
Bank Card

Prepare
Prepaid

Bank Card

V

Source
Model

Prepare
Credit Card< 3.5

3.5

Copy/
Check out

X X
Record

Customer
Data

Compute
Customer
Scoring

Prepare
Bank Card

Prepare
Prepaid

Bank Card

V’’

Prepare
Credit Card< 3.5

3.5

Set Daily
Withdrawal

Limit

Set Daily
Withdrawal

Limit

Fig. 4.4 Initial Mapping created between two Versions V and V
′′

when V is copied during
Check-out

Listing 1. Algorithm for the Update of a Partial MappingM(V,Vi)

Input: MappingM
Input: Process Model V
Input: Process Model Vi

Output: updated MappingM
updateMapping(M, V,Vi)

Ni = Vi.getModelElements();
// find deleted and modified model elements

foreach (1 − 1) correspondence c ∈ M do
e = c.getModelElement(Vi);
if e � Ni ∨ e.isModified() then
// remove correspondence c
M.remove(c)

end
end
returnM;

end

the mappingM(V,Vi). Similar, in the case that a model element in Vi was modified,
the correspondence c is removed, too.

Figure 4.5 provides an example for an updated partial mappingM(V,V2) between
the process models V and its succeeding version V2 (introduced in Figure 1.2). The
arrows represent (1−1) correspondences and connect model elements with the same
functionality. Highlighted model elements in process models V2 do not have a coun-
terpart in process model V and are attached to (0−1) correspondences in the updated

4.4 Matching in Versioning Scenarios 61

mapping. The activity “Set Daily Withdrawal Limit” in V is no longer existing in
process model version V2, respectively a (1 − 0) correspondences is attached to this
model element in the mapping. Again, correspondences between edges and frag-
ments of V and V2 are not visualized due to readability reasons.

X X
Record

Customer
Data

Compute
Customer
Scoring

Prepare
Bank Card

Prepare
Prepaid

Bank Card

V

Prepare
Credit Card< 3.5

3.5

X X
Record

Customer
Data

Compute
Customer
Scoring

Prepare
Bank Card

Prepare
Prepaid

Bank Card

Open
Account

Prepare
Credit Card< 3.5

3.5

X X

Check
Customer
Data

Retrieve
add. Data

+

+

+

Ask for
Credit Limit

Calculate
Interest
Rate

Select
Credit Card
Corporation

Print
Credit Card
Contract

V2

Set Credit
Limit to 0

Remove
Credit Card

Set Interest
Rate to 0

Set Daily
Withdrawal

Limit

Fig. 4.5 Updated Partial Mapping of the Process Models V and V2 (introduced in Figure 1.2)

So far, we have created and updated the partial mappingsM(V,V1) andM(V,V2).
We complete these mappings in the next section.

4.4.3 Completion of the Partial Mappings

Based on a partial mapping between two process models V and Vi, we present an
approach to obtain a complete mapping between the process models.

A partial mappingM(V,Vi) contains only (1−1) correspondences between model
elements that exist in both process models V and Vi and are unchanged in the version
Vi. To complete a partial mapping, we have to assign correspondences to unmatched
model elements. That means, we have to assign (1 − 1) correspondences to model
elements that actually match, assign (1−0) correspondences to model elements that
only exist in version V , and assign (0 − 1) correspondences to model elements that
only exist in version Vi.

A model element is unmatched in a partial mapping if it was newly inserted in
the version Vi or if it was modified in version Vi and a former existing (1 − 1)
correspondence was removed from the partial mapping.

We match unmatched model elements according to the following strategies by
leveraging existing model matching strategies and the knowledge given in the partial
mappings. First, we match nodes. Based on the obtained node mapping, we then
match edges. Finally, we match fragments.

Matching Nodes and Edges

In the following, we describe an approach to match nodes and edges between
two given process models V and Vi. The approach identifies correspondences by

62 4 Matching

identifying similarities between nodes and edges in different business process mod-
els2. We first match nodes to obtain a node mapping. Afterwards, we match edges
based on this node mapping.

For the matching of nodes, we use two strategies that are applied sequentially.
First, we use an ID-based strategy and compare the names of nodes. If the names of
two nodes of the same type are equal, we establish a (1−1) correspondence between
the two nodes. After the name comparison, we apply a similarity-based strategy
that computes a Levenshtein [Levenshtein, 1966] distance between the names of the
remaining nodes and match nodes whose distance is under a certain threshold. The
matching of nodes could further be improved by adding a step that tries to identify
corresponding nodes using an ontology. Thereby, correspondences between nodes
can be identified those names contain synonyms.

Finally, we classify unmatched nodes that do not have a corresponding counter-
part by adding (1 − 0) correspondences to the mappingM(V,Vi) if the unmatched
node exists in V or a (0 − 1) correspondence if the node exists in Vi.

Based on the node mapping, we match edges using a signature-based strategy.
Therefore, edges are matched based on the source node and the target node that they
connect. In the first step, we try to match edges those source and target node corre-
spond to each other and add a (1 − 1) correspondence to the mapping. In a second
step, we match the remaining edges where either the source or the target nodes are
corresponding and add (1 − 1) correspondences to the mapping, too. Analogously
to the node mapping, we classify edges without a counterpart in the other model by
adding a (1 − 0) correspondence to the mapping if an edge only exists in version V
or a (0 − 1) correspondence if an edge only exists in Vi.

After the node and edge matching, an appropriate correspondence is attached to
all edges and nodes in the mappingM(V,Vi). Based on the mapping of nodes and
edges, we compute a mapping between fragments in the following.

Matching Fragments

Similar to the node and edge matching, we have to match fragments between two
process models V and Vi without a correspondence in the mapping M(V,Vi). In
general, two unmatched fragments fV and fVi shall be matched if they fulfill the
following requirements:

• fV and fVi are of the same type, e.g. sequential, alternative, parallel, etc., and
• fV and fVi contain corresponding model elements.

To match fragments, we apply a similarity-based matching strategy and iterate over
all unmatched fragments of the same type in V and Vi to identify potentially match-
ing pairs of fragments that contain corresponding model elements. As discussed in
Section 3.4 in Chapter 3, the type of a fragment is determined by the execution logic
of its contained gateways. We add (1 − 1) correspondences to the mapping for pairs

2 Note that gateways are not matched during node matching, they are considered during the
matching of fragments.

4.4 Matching in Versioning Scenarios 63

of fragments of the same type if most of their contained nodes correspond to each
other. In the case that for a fragment several potential matching candidates exists,
we additionally consider the position of these candidates and match the fragment
with the candidate that is in its vicinity.

During the fragment matching, we additionally establish correspondences be-
tween unmatched gateways that serve as entry or exit nodes of corresponding frag-
ments. Finally, we add a (1 − 0) correspondence to the mapping for fragments that
only exists in version V and a (0 − 1) correspondence for fragments that only exists
in Vi.

Using this approach, a partial mapping M(V,Vi) between two process models
can be completed such that every model element in V,Vi is attached to an appropri-
ate correspondence. Please note that the approach to fragment matching presented
here, is mainly based on the syntax of process models and their fragments. Only the
type information of the fragment represents semantics. As a consequence, the ob-
tained fragment mapping may be imprecise, since fragments may be matched whose
contained elements are executed in different execution orders resulting in different
sets of execution traces. To overcome this issue, we present an approach to identify
equivalent fragments based on their execution traces in Chapter 8.

In the next section, we describe how the partial mapping M(V1,V2) between
the process model versions V1 and V2 can be derived from the complete mappings
M(V,V1) andM(V,V2).

4.4.4 Derivation of the MappingM(V1,V2)

The partial mappingM(V1,V2) can be constructed based on the common ancestor
version V referenced in the complete mappings M(V,V1) and M(V,V2). To that
extent, we iterate over the correspondences contained in the complete mappings
M(V,V1) andM(V,V2). Depending on the type of the correspondence, we add new
correspondences toM(V1,V2) as specified in Table 4.1. For instance, we add a (1−1)
correspondence between two model elements x1 ∈ V1 and x2 ∈ V2 if x1 is connected
to an element x by a (1− 1) correspondence inM(V,V1) and x2 is connected to x by
a (1 − 1) correspondence inM(V,V2).

Table 4.1 Derivation of a Partial MappingM(V1,V2)

M(V,V1) M(V,V2) M(V1,V2)
(1 − 1) (1 − 1) (1 − 1)
(1 − 1) (1 − 0) (1 − 0)
(1 − 0) (1 − 1) (0 − 1)
(1 − 0) (1 − 0) ?
(0 − 1) (0 − 1) ?

In the case, that a model element x only exists in the source process model V
and no longer in V1 and V2 (see fourth row in Table 4.1), no correspondence is
added to the mapping M(V1,V2). Similar, for newly added model elements that

64 4 Matching

exist in V1 and V2 but not in the source version V (see fifth row in Table 4.1), no
correspondences are added to the mapping M(V1,V2). Accordingly,M(V1,V2) is
also a partial mapping and needs to be completed.

Analogously to the completion of the partial mappingsM(V,V1) and M(V,V2)
described in Section 4.4.3, the mapping M(V1,V2) is completed by first match-
ing unmatched nodes between the process model versions V1 and V2. Based on the
node mapping, an edge matching is performed and finally unmatched fragments are
matched. After the completion, for every model element in V1 and V2 an appropriate
correspondence is contained in the mappingM(V1,V2).

Based on the complete mappingsM(V,V1) andM(V,V2) differences between the
process models can be inferred from the contained (1−0) and (0−1) correspondences
to merge different process model versions.

4.5 Summary and Discussion

In this chapter, we have established requirements a mapping between process model
versions has to fulfill. With respect to these requirements, we have evaluated exist-
ing approaches to model matching classified into two different strategies: identity-
based and similarity-based matching strategies. We have presented our model for the
representation of correspondences between related model elements. We have intro-
duced model matching in versioning scenarios and the concept of a partial mapping
that can be created and updated automatically in such scenarios. Based on the par-
tial mapping, we have then proposed an approach to compute complete mappings
between versions of process models.

The outputs of this chapter are mappings containing sets of correspondences be-
tween related model elements contained in different business process model ver-
sions. In the next chapter, we consider possible options to represent differences be-
tween of different process model versions.

5

Difference Representation

For the merging of different process model versions into an integrated version, dif-
ferences between the versions must be identified and represented appropriately that
a human user can inspect the differences and can select a subset of the differences
that shall be resolved in an integrated process model version. In this chapter, we
introduce difference representations for process model change management.

To that extent, we begin by establishing requirements a difference representation
for process model change management has to fulfill in Section 5.1. In Section 5.2,
we first introduce a difference representation in terms of elementary change oper-
ations and show their completeness to represent all kinds of differences that can
occur between two process models. In Section 5.3, we present an improved differ-
ence representation based on compound change operations. Finally, we conclude
with a summary and discussion in Section 5.4.

5.1 Requirements for Difference Representation

In this section, we discuss requirements a difference representation between process
models has to fulfill.

In general, a difference representation must be able to represent all possible dif-
ferences that can occur between two process models in order to transform a source
process model into a target process model. In addition, based on a representation
it must be possible to resolve a difference. Further, similar to the merging of tex-
tual documents, process models are merged by a business user, who usually is not
a computer scientist. The business user inspects and resolves certain differences in
order to obtain an integrated process model version. For that purpose, the difference
representation has to fulfill specific requirements concerning user-friendliness. For
instance differences must be displayed in a form that is understandable by a business
user, e.g. by grouping related differences that need to be resolved together.

In summary, we obtain the following two general requirements for difference
representations:

66 5 Difference Representation

R1 (Completeness) The difference representation must be complete that every pos-
sible difference between two process models in the IR can be represented and
based on the representation the difference can be resolved.

R2 (Understandability) The representation of differences shall be user-friendly and
intuitively understandable by business users.

For the representation of differences between models, typically two different tech-
niques exist [Cicchetti et al., 2007]: Either in terms of a change log (or edit
script) [Alanen and Porres, 2003, Rinderle et al., 2004, Xing and Stroulia, 2005,
Rinderle et al., 2006] that contains change operations to transform one model into
the other, or by representing differences visually by overlapping common parts of
the models [Ohst et al., 2003].

The former kind of difference representation is operational and describes in terms
of change operations how a source model can be transformed into a target model.
The latter kind is a declarative difference representation [Ohst et al., 2003] that de-
scribes differences between models, e.g. by overlapping common parts of models.
In [Dijkman, 2007], a declarative classification of differences between process mod-
els is presented. In contrast to an operational difference representation, declarative
difference representations do not describe how one model is transformed into the
other.

Examples for operational difference representations are UMLDiff
[Xing and Stroulia, 2005] or the EMF Compare plugin [Eclipse Foundation, 2011c].
There, differences between models are captured in terms of change operations that
can be applied directly to resolve differences between models. Change operations
support modifications of single model elements such as the addition, deletion,
renaming, and movement. The granularity of the change operations is by default
on an elementary level, i.e. every modification of a single element results in an
elementary change operation. Cicchetti et al. propose a meta-model independent
approach for the representation of differences in [Cicchetti et al., 2007]. For every
concrete class in a given meta-model, three individual meta-classes are added: one
for the insertion, one for the deletion, and one to represent other modifications.

For the difference representation in change management of process models, an
operational difference representation has several benefits compared to a declara-
tive difference representation. For instance, an operational difference representa-
tion in terms of change operations can directly be applied to resolve the differences
they describe. Further, in state-based versioning scenarios, an operational difference
representation of individual differences is easier to obtain than a declarative repre-
sentation of individual representations. For instance, to obtain a declarative repre-
sentation of individual differences, for each difference, two process models have to
be computed based on the source process model and the target process model at
hand. Out of these reasons, we consider in the following only operational difference
representations in terms of change operations that can directly be applied to resolve
differences.

Finally, as described in Chapter 3, we assume that process models are connected,
i.e. every element in a process model is on a path from a start node to an end node.

5.2 Difference Representation Based on Elementary Change Operations 67

Consequently, we require that an operational difference representation supports the
creation of connected merged process models.

To summarize, we capture the following two further requirements a solution for
process model change management has to fulfill:

R3 (Directly Resolvable) Differences between process models shall be directly re-
solvable based on their operational representation.

R4 (Connected Process Model) The difference representation shall support the cre-
ation of connected merged process models.

In the course of our research, we first approached the problem of finding a suitable
difference representation by capturing differences in terms of elementary change op-
erations. This approach is described in Section 5.2. In Section 5.3, we then improve
the difference representation based on elementary change operations and introduce
the concept of compound change operations that comprise several related, elemen-
tary change operations.

5.2 Difference Representation Based on Elementary Change
Operations

In this section, we introduce an approach for the representation of differences be-
tween process models in terms of elementary change operations. Then, we proof
that elementary change operations are sufficient to express all differences between
two process models. Finally, we evaluate elementary change operations according
to the requirements for difference representations.

5.2.1 Elementary Change Operations

An elementary change operation modifies a single element in a process model. For
instance, an element may be inserted into or deleted from a process model. Elemen-
tary change operations are usually supported by process modeling editors that allow
users to connect and combine iteratively all kinds of model elements to develop
process models.

Several model versioning approaches exists that rely on elementary change
operations to represent differences between models. For instance, differ-
ences between MOF-based models are identified and represented in terms
of elementary change operations in [Alanen and Porres, 2003]. Similar, the
approaches [Ohst et al., 2003, Pottinger and Bernstein, 2003, Kelter et al., 2005,
Eclipse Foundation, 2011c, Cicchetti et al., 2008], or [Murta et al., 2007] rely in el-
ementary change operations. For a more complete overview, we refer to Section 2.4
in Chapter 2.

Based on the meta-model of the intermediate representation (IR), we derive a dif-
ference meta-model consisting of elementary change operation types to represent dif-
ferences between process models. Such a difference meta-model can be constructed

68 5 Difference Representation

as described in [Cicchetti et al., 2007] or in [Rivera and Vallecillo, 2008]. For every
selected class in the meta-model of the IR, we add an individual meta-class for the
insertion and deletion to the difference meta-model. For instance, for the class Edge,
we add the classes InsertEdge and DeleteEdge to the difference meta-model. Fig-
ure 5.1 (a) visualizes the meta-model for elementary difference models. For conve-
nience, the meta-model of the intermediate representation (IR) is shown next to the
meta-model of the elementary difference model.

Elementary
Change Operation

InsertNode

DeleteNode

InsertEdge

requires,

enables,

conflicting*

b)a)
Element

FragmentNodeEdge 1*

source

targetincoming

outgoing

*

Activity

AND Split

XOR Split

AND Join

XOR Join

Sequential
Fragment

Parallel
Fragment

Alternative
Fragment

Complex
Fragment

Event

IR Initial

Intermediate
Representation (IR)
Process Model

*

Undefined
Split

Undefined
Join

IR Final

Gateway

DeleteEdge

Elementary
Difference Model

*

Fig. 5.1 (a) Meta-Model for Difference Models based on elementary Change Operations to-
gether with (b) the Meta-Model of the Intermediate Representation

We distinguish between different types of elementary change operations: Insert-
Node, InsertEdge, DeleteNode, and DeleteEdge. This set of elementary change op-
erations can be used to represent differences caused by the insertion and deletion of
Edges and Nodes in IR process models (see highlighted elements in Figure 5.1 (b)).
Differences caused by the insertion and deletion of concrete nodes, such as Events,
Activities, or Gateways are also represented by InsertNode and DeleteNode op-
erations. Further, it is worth to mention that additional elementary change operation
types for the representation of Fragments differences are not needed. A fragment
consists of several model elements, such as edges and gateways. Hence, fragment
differences are already represented by elementary change operations for Nodes and
Edges.

The elementary change operations are typed over the meta-model of the interme-
diate representation and are defined as follows:

InsertNode :: IR Process Model × Node −→ IR Process Model
DeleteNode :: IR Process Model × Node −→ IR Process Model
InsertEdge :: IR Process Model × Edge × Node × Node −→ IR Process Model
DeleteEdge :: IR Process Model × Edge × Node × Node −→ IR Process Model
In the following, we describe the semantics of the elementary change operations in-
formally by describing the impact of their application and give a concrete example.

5.2 Difference Representation Based on Elementary Change Operations 69

InsertNode

An InsertNode(IR Process Model, Node) operation inserts a single Node, e.g. an
Activity or a Gateway, in an IR Process Model. After the insertion, the node is
not connected to any other node in the process model until an InsertEdge operation
is applied to connect the newly inserted node with another node in the process
model. The inverse operation of InsertNode is the DeleteNode operation.
Figure 5.2 shows the application of an Insert-
Node(V, “Compute Customer Scoring”) operation that inserts the Activity
“Compute Customer Scoring”.

Compute
Customer

InsertNode
Record

Customer
Data

Customer
Scoring

V’
Record

Customer
Data

V

Fig. 5.2 Application of an elementary InsertNode Operation that inserts the Activity “Com-
pute Customer Scoring”

DeleteNode

The DeleteNode(IR Process Model, Node) operation removes a Node from an IR
Process Model. In approaches that do not allow dangling edges, the application
of a DeleteNode operation will additionally delete all incoming and outgoing edges
(by DeleteEdge operations). The inverse operation of DeleteNode is the Insert-
Node operation1. In Figure 5.3, the Activity “Record Customer Data” is deleted
by a DeleteNode(V, “Compute Customer Scoring”) operation.

Compute

DeleteNode
Record

Customer
Data

Customer
Scoring

V’
Record

Customer
Data

V

Fig. 5.3 Application of an elementary DeleteNode Operation that deletes the Activity “Com-
pute Customer Scoring”

1 In the case that additional delete operations were applied to delete dangling edges, appro-
priate InsertNode operations have to be added to the inverse operation.

70 5 Difference Representation

InsertEdge

The InsertEdge(IR Process Model, Edge, Node, Node) operation adds an Edge
between two Nodes in an IR Process Model. The node s, where the edge starts, is
called source node of the edge and the node t, where the edge ends, is the target node
of the edge. After the insertion, the source node s and the target node t are directly
connected. The inverse operation of InsertEdge is the DeleteEdge operation. The
application of an InsertEdge(V, e, “Record Customer Data”,“Compute Customer
Scoring”) operation is visualized in Figure 5.4 by connecting the Activities
“Record Customer Data” and “Compute Customer Scoring”.

Record
Customer

Data

Compute
Customer
Scoring

InsertEdge
Record

Customer
Data

Compute
Customer
Scoring

V V’
e

Fig. 5.4 Application of an elementary InsertEdge Operation

DeletedEdge

The DeleteEdge(IR Process Model, Edge, Node, Node) operation removes an
Edge between two Nodes in an IR Process Model. Its inverse operation is the
InsertEdge operation. An example for the DeleteEdge operation is given in Fig-
ure 5.5. There, the outgoing edge e of the activity “Record Customer Data” is
deleted by the DeleteEdge(V, e, “Record Customer Data”,“Compute Customer
Scoring”) operation.

Record
Customer

Data

Compute
Customer
Scoring

DeleteEdge
Record

Customer
Data

Compute
Customer
Scoring

V V’
e

Fig. 5.5 Application of an elementary DeleteEdge Operation that disconnects the
Activities “Record Customer Data” and “Compute Customer Scoring”

In the next section, we evaluate whether the elementary change operations intro-
duced here are sufficient to represent all possible differences between two IR process
models.

5.2.2 Completeness of Elementary Change Operations

Having introduced elementary change operations for the representation of differ-
ences between process models in the intermediate representation (IR), one question
to ask is whether all possible differences that can occur between two process models

5.2 Difference Representation Based on Elementary Change Operations 71

V and Vi can be represented using elementary change operations. If this is the case,
then the set of elementary change operations is complete.

To proof the completeness of elementary change operations, we first reason about
possible modifications that can be applied to a process model. Based on these mod-
ifications, we define two classes of differences between process models, namely
Insert- and DeleteDifferences. Finally, we show that these classes of differences can
be represented by elementary change operations.

For the following discussion, we assume that two syntactically equal process
models V and Vi are given. Based on this pair of process models, we introduce
a difference between the two models by modifying Vi. To that extent, we have to
consider the meta-model of the intermediate representation and derive modifications
resulting in differences between V and Vi. The modifications have to be derived in
such a way that after the modification, Vi is still an instance of the IR meta-model.
We can derive the following three different modifications:

1. (Addition of a model element): A concrete model element specified in the
meta-model can be added to the process model Vi. In the case of the IR, we can
add an Edge or a concrete Node to the model Vi

2.
2. (Removal of a model element): A model element that already exists in the

process model Vi can be removed from Vi. For the IR, we can remove an Edge
or a concrete Node from the model Vi.

3. (Update of a model element): A model element that already exists in the pro-
cess model Vi can be updated by changing one of its attributes. For instance, we
can change the name of an Activity in the IR Process Model Vi or alter the
source of an Edge by reconnecting it to a different Node.

Apparently, these modifications comprise all possible differences that can occur be-
tween two IR Process Models. For convenience, we further assume that the last
modification, which updates existing model elements, can be reduced to a com-
bination of the first and second modification. That means, instead of updating an
existing model element in a process model, the model element can be removed from
the process model and afterwards added again with updated attributes.

Accordingly, the first and the second modifications are sufficient to create all
possible differences between two process models. We distinguish the obtained dif-
ferences into two types InsertDifference and DeleteDifference, which are defined
next.

Definition 4 (InsertDifference). Given two IR Process ModelsV, Vi and a map-
pingM(V,Vi) containing the setM0−1(V,Vi) that consists of (0−1) correspondences
inM(V,Vi) to represent Elements that only exist in Vi, then an InsertDi f f erence
is defined as an Element x ∈ M0−1(V,Vi).

2 Fragments are not directly modified in an IR process model. They are computed based
on the Edges and Nodes in an IR Process Model as described in Chapter 3.

72 5 Difference Representation

Definition 5 (DeleteDifference). Given two IR Process Models V, Vi and a
mapping M(V,Vi) containing the set M1−0(V,Vi) that consists of (0 − 1) corre-
spondences inM(V,Vi) to represent Elements that only exist in V, then a Delete-
Di f f erence is defined as an Element y ∈ M1−0(V,Vi).

To proof the completeness of the set of elementary change operations, we have to
show that using elementary changes these two types of differences can be repre-
sented and resolved based on the representation. The following theorem establishes
a relationship between the difference types and our elementary change operations:

Theorem 1 (Completeness of Elementary Change Operations). Given two IR
Process Models V,Vi and a set of elementary change operations consisting of
InsertNode, DeleteNode, InsertEdge, and DeleteEdge. For each possible differ-
ence between the process models V and Vi a sequence of appropriate elementary
change operations op1 . . . opn exists that resolves the difference.

Proof: As mentioned above, possible differences between two process models
can be distinguished into two difference types: InsertDi f f erence and Delete-
Di f f erence. In the following, we show how elementary change operations can be
used to represent differences of these types. Let a difference δ between the process
models V and Vi be given and type(δ) shall be the difference type of δ.

• If type(δ) = InsertDi f f erence: There exists a model element e in Vi that does
not exist in process model V . The difference can be represented by an elementary
change operation that resolves the difference by inserting the model element e
also into process model V . Depending on the type of the model element e one of
the following elementary change operation is used: InsertNode or InsertEdge.

• If type(δ) = DeleteDi f f erence: There exists a model element e in V that does
not exist in process model Vi. The difference can be represented by an elemen-
tary change operation that resolves the difference by deleting the model element
e also from process model V . Depending on the type of the model element e one
of the following elementary change operation is used: DeleteNode or Delete-
Edge.

Theorem 1 shows that elementary change operations fulfill the property of com-
pleteness. That means, all differences between process models can be represented
and resolved using elementary change operations. In the following section, we pro-
vide an example of an elementary difference model.

5.2.3 An Example of an Elementary Difference Model

Table 5.1 shows an elementary difference model Δ(V,V2) that represents the differ-
ences between the process models V and V2 from our example (see Figure 1.3) in
terms of elementary change operations. The operations are arranged according to
their appearance in the process model V2 going through the process model from left
to right. To enable the distinction between different inputs and outputs of gateways,
we labeled the inputs with I1..In and the outputs with O1..On.

5.2 Difference Representation Based on Elementary Change Operations 73

Ta
bl

e
5.

1
C

ha
ng

e
L

og
Δ

(V
,V

2
)

co
ns

is
ti

ng
of

E
le

m
en

ta
ry

C
ha

ng
e

O
pe

ra
ti

on
s

th
at

re
pr

es
en

tt
he

D
iff

er
en

ce
s

be
tw

ee
n

th
e

P
ro

ce
ss

M
od

el
s

V
an

d
V

2

Δ
(V
,V

2
)

D
el

E
dg

e(
V,

e 2
,“

R
ec

.C
us

t.
D

at
a”
,“

C
om

p.
C

us
t.

Sc
or

in
g”

)
In

sN
od

e(
V,

“
X

O
R
−

Jo
in

fL
oo

p
”

)

In
sN

od
e(

V,
“

X
O

R
−S

pl
it

fL
oo

p
”

)

In
sE

dg
e(

V,
e 1

1
,“

R
ec

or
d

C
us

t.
D

at
a”
,“

X
O

R
−J

oi
nI

2 fL
oo

p
”

)

In
sE

dg
e(

V,
e 1

2
,“

X
O

R
−S

pl
it

O
1

fL
oo

p
”
,“

C
om

p.
C

us
t.

Sc
or

in
g”

)

In
sN

od
e(

V,
“

C
he

ck
C

us
t.

D
at

a”
)

In
sN

od
e(

V,
“

R
et

ri
ev

e
ad

d.
D

at
a”

)

In
sE

dg
e(

V,
e 1

3
,“

X
O

R
−J

oi
nO

1
fL

oo
p

”
,“

C
he

ck
C

us
t.

D
at

a”
)

In
sE

dg
e(

V,
e 1

4
, “

C
he

ck
C

us
t.

D
at

a”
,“

X
O

R
−S

pl
it

I1 fL
oo

p
”

)

In
sE

dg
e(

V,
e 1

5
,“

R
et

ri
ev

e
ad

d.
D

at
a”
,“

X
O

R
−

Jo
in

I1 fL
oo

p
”

)

In
sE

dg
e(

V,
e 1

6
,“

X
O

R
−S

pl
it

O
2

fL
oo

p
”
,“

R
et

ri
ev

e
ad

d.
D

at
a”

)

D
el

E
dg

e(
V,

e 5
,“

P
re

p.
B

an
k

C
ar

d”
,“

P
re

p.
C

re
di

tC
ar

d”
)

In
sN

od
e(

V,
“

A
N

D
−S

pl
it

fP
ar

”
)

In
sN

od
e(

V,
“

A
N

D
−

Jo
in

:1
fP

ar
”

)

In
sN

od
e(

V,
“

A
N

D
−

Jo
in

:2
fP

ar
”

)

In
sE

dg
e(

V,
e 1

7
,“

P
re

p.
B

an
k

C
ar

d”
,“

A
N

D
−S

pl
it

I1 fP
ar

”
)

..
.

..
.

In
sE

dg
e(

V,
e 1

8
,“

A
N

D
−

Jo
in

:1
O

1
fP

ar
”
,“

P
re

p.
C

re
di

tC
ar

d”
)

In
sN

od
e(

V,
“

P
ri

nt
C

r.
C

.C
on

tr
ac

t”
)

In
sN

od
e(

V,
“

Se
le

ct
C

r.
C

.C
or

p.
”

)
In

sN
od

e(
V,

“
A

sk
fo

r
C

r.
L

im
it

”)
In

sN
od

e(
V,

“
C

al
c.

In
te

re
st

R
at

e”
)

In
sE

dg
e(

V,
e 1

9
,“

A
N

D
−S

pl
it

O
1

fP
ar

”
,“

P
ri

nt
C

r.
C

.C
on

tr
ac

t”
)

In
sE

dg
e(

V,
e 2

0
,“

P
ri

nt
C

r.
C

.C
on

tr
ac

t”
,“

A
N

D
−

Jo
in

:1
I1 fP

ar
”

)

In
sE

dg
e(

V,
e 2

1
,“

A
N

D
−S

pl
it

O
2

fP
ar

”
,“

Se
le

ct
C

r.
C

.C
or

p.
”

)

In
sE

dg
e(

V,
e 2

2
,“

Se
le

ct
C

r.
C

.C
or

p.
”
,“

A
N

D
−

Jo
in

:2
I1 fP

ar
”

)

In
sE

dg
e(

V,
e 2

3
,“

A
N

D
−S

pl
it

O
3

fP
ar

”
,“

A
sk

fo
r

C
r.

L
im

it
”)

In
sE

dg
e(

V,
e 2

4
,“

A
sk

fo
r

C
r.

L
im

it
”,

“
A

N
D
−

Jo
in

:2
I2 fP

ar
”

)

In
sE

dg
e(

V,
e 2

5
,“

A
N

D
−

Jo
in

:2
O

1
fP

ar
”
,“

C
al

c.
In

te
re

st
R

at
e”

)

In
sE

dg
e(

V,
e 2

6
,“

C
al

c.
In

te
re

st
R

at
e”
,“

A
N

D
−

Jo
in

:1
I2 fP

ar
”

)

D
el

E
dg

e(
V,

e 8
,“

P
re

p.
P.

B
an

k
C

ar
d”
,“

Se
t

D
.W

it
hd

.L
im

it
”)

D
el

E
dg

e(
V,

e 9
, “

Se
tD

.W
it

hd
.L

im
it

”,
“

X
O

R
−J

oi
nI

2 fA
lt

”
)

D
el

N
od

e(
V,

“
Se

t
D

.W
it

hd
.L

im
it

”)
..
.

..
.

In
sN

od
e(

V,
“

Se
t

C
r.

L
im

it
to

0”
)

In
sN

od
e(

V,
“

R
em

ov
e

C
r.

C
ar

d”
)

In
sN

od
e(

V,
“

Se
t

In
te

re
st

R
at

e
to

0”
)

In
sE

dg
e(

V,
e 2

7
,“

P
re

p.
P.

B
an

k
C

ar
d”
,“

Se
t

C
r.

L
im

it
to

0”
)

In
sE

dg
e(

V,
e 2

8
,“

Se
tC

r.
L

im
it

to
0”
,“

R
em

ov
e

C
r.

C
ar

d”
)

In
sE

dg
e(

V,
e 2

9
,“

R
em

ov
e

C
r.

C
ar

d”
,“

Se
t

In
te

re
st

R
at

e
to

0”
)

In
sE

dg
e(

V,
e 3

0
,“

Se
tI

nt
er

es
t

R
at

e
to

0”
,“

X
O

R
−

Jo
in

I2 fA
lt

”
)

D
el

E
dg

e(
V,

e 1
0
,“

X
O

R
−

Jo
in

O
1

fA
lt

”
,“

E
nd

”
)

In
sN

od
e(

V,
“

O
pe

n
A

cc
ou

nt
”

)

In
sE

dg
e(

V,
e 3

1
,“

X
O

R
−

Jo
in

O
1

fA
lt

”
,“

O
pe

n
A

cc
ou

nt
”

)

In
sE

dg
e(

V,
e 3

2
,“

O
pe

n
A

cc
ou

nt
”
,“

E
nd

”
)

74 5 Difference Representation

Such a difference model can be shown to a business user, who then applies se-
lected change operations in order to resolve differences between process models.
In change management, a difference model is typically referred to as a change log.
Accordingly, we will use the terms difference model and change log synonymously
in the remainder of this book. In the next section, we evaluate the suitability of a
difference representation based on elementary change operations for process model
change management.

5.2.4 Discussion

In this section, we evaluate the use of elementary change operations with respect
to our requirements for differences representation that we have introduced in Sec-
tion 6.1.

All possible differences between two process models can be represented by an ap-
propriate elementary change operation and the application of an elementary change
operation resolves the difference it represents.

However, looking at the change log presented in Table 5.1, the total number of
elementary change operations required to represent the differences between the pro-
cess models V and V2 is overwhelming. Based on the elementary change opera-
tions it is difficult to grasp the actual high-level logical/structural change that was
applied to a process model. Even simple differences result in a multitude of ele-
mentary change operations. For instance, the insertion of a single node in a con-
nected process model results in four elementary change operations: First, the new
node is inserted, resulting in an InsertNode change operation. Then, a DeleteEdge
change operation occurs by the removal of the edge that connects the predeces-
sor and the successor of the newly inserted node. Finally, the new node is con-
nected to its predecessor and successor, rising two InsertEdge operations. Based
on these four elementary change operations, it is difficult to understand the inten-
tion of the difference (i.e. a single node was inserted between a predecessor and a
successor).

In addition, based on elementary change operations it is difficult to identify,
which differences can be resolved independently, i.e. without the necessity to re-
solve other differences in advance. That means for the small example from above
(insertion of an activity), in order to obtain a connected process model, a busi-
ness user has to ensure that all four elementary change operations are applied
together.

Table 5.2 summarizes the suitability of elementary change operations for the pur-
pose of difference representation in process model change management. The gran-
ularity of elementary change operations is too fine grained to describe the actual
intention of changes that are applied to process models.

In the next section, we introduce an improved approach for difference represen-
tation that considers differences on a higher level.

5.3 Difference Representation Based on Compound Change Operations 75

Table 5.2 Features of Elementary Change Operations according to the Requirements for Dif-
ference Representations (Section 5.1)

Requirements for Difference Representa-
tion

Elementary Change Op-
erations

[R1] Completeness ✔

[R2] Understandability ✘

[R3] Directly Resolvable ✔

[R4] Connected Process Model ✘

5.3 Difference Representation Based on Compound Change
Operations

In this section, we present an improved approach for difference representation be-
tween process models that overcomes the issues of elementary change operations.
The approach represents differences in terms of compound change operations that
are composed of several related elementary changes.

Analogously to the introduction of elementary change operations in the previous
section, we first describe compound change operations and then show the complete-
ness of compound change operations in Section 5.3.2. In Section 5.3.3, we provide
an example of a compound difference model describing the differences between the
process models V and V2 (see Figure 1.3). Finally, we discuss compound change
operations according to the requirements for difference representation.

5.3.1 Compound Change Operations

In contrast to elementary change operations, that modify atomic model elements,
compound change operations comprise several elementary change operations.
Thereby, compound change operations represent differences on a higher level and
enable us to abstract from differences due to single edges and gateways.

Resolving differences using compound change operations is improved in two
ways: First, compound change operations take care of an automatic reconnection of
the control-flow in the process model. For instance, an activity is not only inserted
but it is also connected to its preceding and succeeding node. Second, compound
change operations comprise related elementary changes that must be applied to ob-
tain a connected process model. For instance, a difference due to the insertion of an
AND-Split is usually accompanied with at least a difference caused by the insertion
of an AND-Join, which together form a parallel fragment. These related differences
are represented together in terms of a compound fragment operation. If such a com-
pound fragment operation shall be applied to resolve the difference it represents, the
operation ensures that the fragment is inserted completely and is also connected to
its preceding and succeeding node in the obtained integrated process model.

Figure 5.6 (a) visualizes the meta-model for compound difference models based
on compound change operations. For convenience, the meta-model of the interme-
diate representation (IR) is shown next to the meta-model of the difference model.

76 5 Difference Representation

*

Compound
ChangeOperation

Compound
FragmentOperation

InsertFragment

DeleteFragment

MoveFragment

Compound
NodeOperation

InsertActivity

DeleteActivity

MoveActivity

ConvertFragment

requires,

enables,

conflicting*

+node:Node

+fragment:Fragment

b)a)
Element

FragmentNodeEdge 1*

source

targetincoming

outgoing

*

Activity

AND Split

XOR Split

AND Join

XOR Join

Sequential
Fragment

Parallel
Fragment

Alternative
Fragment

Complex
Fragment

Event

IR Initial

Intermediate
Representation (IR)
Process Model

*

Undefined
Split

Undefined
Join

IR Final

Gateway

InsertEvent

DeleteEvent

MoveEvent

Compound
Difference Model

Fig. 5.6 (a) Meta-Model for Difference Model based on CompoundChangeOperations to-
gether with (b) the Meta-Model of the Intermediate Representation

We distinguish between compound activity operations, compound event opera-
tions and compound fragment operations that are used to represent differences be-
tween to process models caused by modifications of the highlighted elements in the
meta-model of the IR.

In the following, we introduce compound change operations for activities and
fragments in detail. For every compound change operation, we describe the seman-
tics informally3 by describing the impact of its application in terms of elementary
change operations and give an example for clarification. Note that we do not de-
scribe compound event operations separately, since they are identical to compound
activity operations except that they modify events instead of activities.

Insert-Operations

An InsertActivity operation takes as input an IR Process Model, an Activity,
and two Nodes and produces a modified IR Process Model.

InsertActivity :: IR PM × Activity × Node × Node −→ IR PM
The InsertActivity(V, a, x, y) operation inserts a single Activity a into the IR
Process Model V and connects the Activity with a preceding Node x and suc-
ceeding Node y. The operation comprises a sequence of elementary change opera-
tions: In the case, that the predecessor x and the successor y are already connected
by a control-flow edge, this edge is removed. Then, the new activity a is inserted in
the process model V and it is connected by two InsertEdge operations that connect

3 A formal definition of the semantics of compound change operations in terms of typed
attribute graph transformation rules can be found in Section 7.2.3 of Chapter 7.

5.3 Difference Representation Based on Compound Change Operations 77

the predecessor x and the successor y with the newly inserted activity. The inverse
operation of InsertActivity(V, a, x, y) is the DeleteActivity(V, a, x, y) operation. An
example for the application of an InsertActivity operation that inserts the activity
“Compute Customer Scoring” is shown in Figure 5.7.

Compute
Customer
Scoring

Record
Customer
Data

Record
Customer
Data

V’V
InsertActivity

Fig. 5.7 Application of an InsertActivity Compound Change Operation

An InsertFragment operation takes as input an IR Process Model, a
Fragment, and two Nodes and produces a modified IR Process Model.

InsertFragment :: IR PM × Fragment × Node × Node −→ IR PM
The InsertFragment(V, f , x, y) operation inserts an entire Fragment f into the IR
Process Model V . A fragment is specified by a 4-tuple f = (G,R, entry, exit),
where G is a list of contained Gateways that split and join the control-flow within
the fragment f . R is a relation that specifies how the contained Gateways are con-
nected by edges. Entry and exit determine the entry and exit Nodes of f . To obtain
a connected process model after the application of the operation, the entry and the
exit Nodes are connected with the preceding Node x and the succeeding Node y of
f . In addition, the Nodes contained in f are connected by edges according to the
relation R.

The behavior of the operation can be described by a sequence of elementary
change operations: First, the edge that connects the predecessor x with the succes-
sor y is removed. Then, the new fragment f is inserted by inserting its gateways
specified in G and the entry and exit nodes in the process model using InsertNode
operations. The entry node is then connected to the predecessor x and, analogously,
the exit node is connected to the predecessor y by two InsertEdge operations. Fi-
nally, the contained gateways in the fragment are connected according to relation
R in order to obtain a connected process model. The inverse operation of Insert-
Fragment(V, f , x, y) is the DeleteFragment(V, f , x, y) operation. Figure 5.8 gives an
example for the insertion of an alternative fragment fa into the process model V .

X X
Record

Customer
Data

Compute
Customer
Scoring

< 3.5

V
Compute
Customer
Scoring

Record
Customer
Data

V’

InsertFragment

Data Scoring
3.5

ScoringData

Fig. 5.8 Application of an InsertAlternativeFragment Compound Change Operation

78 5 Difference Representation

To distinguish between InsertFragment operations for different fragment types,
we refer to an InsertFragment operation by adding the type of the inserted frag-
ment to the name of the operation, e.g. InsertCyclicFragment or InsertConcurrent-
Fragment.

Delete-Operations

A DeleteActivity operation takes as input an IR Process Model, an Activity,
and two Nodes and produces a modified IR Process Model.

DeleteActivity :: IR PM × Activity × Node × Node −→ IR PM
The DeleteActivity(V, a, x, y) operation deletes a single Activity a from the IR
Process Model V and reconnects the former predecessor Node x and successor
Node y. The behavior of the operation comprises a sequence of elementary change
operations: First, activity a is disconnected from its predecessor x and its succes-
sor y by applying two DeleteEdge operations. Then, a DeleteNode operation re-
moves activity a from the process model. Finally, the predecessor x and successor
y are connected by executing an InsertEdge operation. The inverse operation of
DeleteActivity(V, a, x, y) is the InsertActivity(V, a, x, y) operation. Figure 5.9 gives
a concrete example of the application of a DeleteActivity operation that deletes the
activity “Compute Customer Scoring” from process model V .

Compute
Customer
Scoring

Record
Customer
Data

Record
Customer
Data

V’V
DeleteActivity

Fig. 5.9 Application of a DeleteActivity Compound Change Operation

A DeleteFragment operation takes as input an IR Process Model, a
Fragment, and two Nodes and produces a modified IR Process Model.

DeleteFragment :: IR PM × Fragment × Node × Node −→ IR PM
The DeleteFragment(V, f , x, y) operation deletes an entire Fragment f from the
IR Process Model V and reconnects the control flow. Analogously to Insert-
Fragment, a fragment is specified as a 4-tuple f = (G,R, entry, exit).

For the deletion of a fragment f , we assume that the fragment is empty, i.e. f only
contains the model elements specified in f = (G,R, entry, exit). This assumption
potentially requires that other compound change operation have been applied in
advance to remove the contents of the fragment, e.g. by deleting or moving model
elements. Such dependencies between compound change operations are discussed
separately in their own Chapter 7. For the moment, we assume that a fragment that
shall be deleted is empty.

5.3 Difference Representation Based on Compound Change Operations 79

The behavior of a DeleteFragment operation comprises a sequence of elementary
change operations: First, the entry is disconnected from its predecessor x and the
exit node is disconnected from its successor y by two DeleteEdge operations. Then,
all edges that connect the gateways in the fragment are deleted by applying a Delete-
Edge operation for each edge determined by the relation R. For every gateways g ∈
G a DeleteNode operation is executed to delete the gateway from the process model.
Finally, to obtain a connected process model the predecessor x and the successor y of
fragment f are reconnected. The inverse operation of DeleteFragment(V, f , x, y) is
the InsertFragment(V, f , x, y) operation. In Figure 5.10, a concrete DeleteFragment
operation that deletes an alternative fragment is applied on process model V .

X X
Record

Customer
Data

Compute
Customer
Scoring

< 3.5

V
Compute
Customer
Scoring

Record
Customer
Data

V’

DeleteFragment

Data Scoring
3.5

ScoringData

Fig. 5.10 Application of a DeleteAlternativeFragment Compound Change Operation

To distinguish between DeleteFragment operations for different fragment types,
we refer to a DeleteFragment operation by adding the type of the deleted fragment
to the name of the operation, e.g. DeleteCyclicFragment or DeleteConcurrent-
Fragment.

Move-Operations

A MoveActivity operation takes as input an IR Process Model, an Activity, and
four Nodes and produces a modified IR Process Model.

MoveActivity :: IR PM × Activity × Node × Node × Node × Node −→ IR PM
The operation MoveActivity(V, a, v,w, x, y) gives an example. It moves a single
Activity a from a position specified by its current preceding Node v and suc-
ceeding Node w to a new position between the new predecessor x and successor y
in the IR Process Model V .

The behavior of the operation comprises the following sequence of elementary
change operations: First, activity a is disconnected from its current predecessor v
and its successor w by applying two DeleteEdge operations. Afterwards, the current
predecessor v and successor w are connected again by an InsertEdge operation. In
the case, that the new predecessor x and the successor y of activity a are already
connected by a control-flow edge, this edge is removed. To complete the compound
change operation, activity a is connected by two InsertEdge operations to its new
predecessor x and its new successor y.

The operation MoveActivity(V, a, v,w, x, y) can be inverted by exchanging its
position parameters resulting in the operation MoveActivity(V, a, x, y, v,w). An

80 5 Difference Representation

example of the application of a concrete MoveActivity operation is visualized in
Figure 5.11. There, the activity “Compute Customer Scoring” is moved behind the
alternative fragment.

< 3 5
MoveActivity

< 3 5

X X
Record

Customer
Data

Compute
Customer
Scoring

< 3.5

3.5

V V’ X X
Record

Customer
Data

< 3.5

3.5

Compute
Customer
Scoring

Fig. 5.11 Application of a MoveActivity Compound Change Operation

A MoveFragment operation takes as input an IR Process Model, a Fragment,
and four Nodes and produces a modified IR Process Model.

MoveFragment :: IR PM × Fragment × Node × Node × Node × Node −→ IR PM
The MoveFragment(V, f , v,w, x, y) operation moves the Fragment f from a posi-
tion specified by its current predecessor Node v and successor Node w to a new
position between predecessor Node x and successor Node y in the IR Process
Model V .

The behavior of the operation is described by the following sequence of elemen-
tary change operations: First, fragment f is disconnected from its current position
by applying two DeleteEdge operations that disconnect the entry and exit nodes
from the predecessor v and the successor w. Afterwards, the current predecessor v
and successor w are connected again by an InsertEdge operation. In the case, that
the new predecessor x and the successor y of fragment f are already connected by
a control-flow edge, this edge is removed. The compound change operation is com-
pleted by applying two InsertEdge operations that connect the new predecessor x
of the fragment with the entry node and the new successor y with the exit node.

The operation MoveFragment(V, f , v,w, x, y) can be inverted by the operation
MoveFragment(V, f , x, y, v,w) whose current and new position parameters are ex-
changed. Figure 5.12 gives an example of the application of a concrete Move-
Fragment operation.

X X
Record

Customer
Compute
Customer

< 3.5

V V’

MoveFragment
Record

Customer
Compute
CustomerX X

< 3.5

X XCustomer
Data

Customer
Scoring

3.5

V V Customer
Data

Customer
Scoring

X X
3.5

Fig. 5.12 Application of a MoveFragment Compound Change Operation that moves an al-
ternative Fragment

Analogously to the other fragment operations, we distinguish between Move-
Fragment operations for different fragment types, by referring to MoveFragment
operations by adding the type of the moved fragment to the name of the operation,
e.g. MoveAlternativeFragment or MoveConcurrentFragment.

5.3 Difference Representation Based on Compound Change Operations 81

ConvertFragment-Operation

A ConvertFragment operation takes as input an IR Process Model, two
Fragments, and two Nodes and produces a modified IR Process Model.

ConvertFragment :: IR PM × Fragment × Fragment × Node × Node −→ IR PM
The ConvertFragment(V, f , fc, x, y) operation gives an example. It substitutes an
existing Fragment f by a Fragment fc in an IR Process Model V . Analo-
gously to the former operations for fragments, fragments are specified as 4-tuples
(G,R, entry, exit). Since a ConvertFragment modifies the structure of an existing
fragment, we have to consider two fragments f and fc for the application of the
operation, whereas f specifies the existing fragment and fc the converted fragment.

For the conversion of a fragment generally three different cases exist: First, the
set of the contained sequential fragments in fragment f is changed by inserting or
deleting gateways and/or edges. Second, the type of the fragment f may be changed
by adding new gateways to the fragment or substituting existing gateways. To give
an example, the AND-split and join gateways of a parallel fragment may be sub-
stituted by XOR gateways resulting in a type change of the parallel fragment to
an alternative fragment. Third, a mixture of the first and the second case may be
identified.

The behavior of the ConvertFragment operation can be described based on ele-
mentary change operations: First, we disconnect the gateways of the existing frag-
ment f from the control-flow by applying DeleteEdge operations. Then, we sub-
stitute the gateways of the existing fragments by the gateways of the converted
fragment fc. To that extent, we first delete the existing gateways applying Delete-
Node operations and then we insert the gateways from the converted fragment using
InsertNode operations. Finally, we connect the inserted gateways according to the
relation R to reestablish a connected fragment. For the reconnection, the mapping
M between the fragments f and fc must be considered. This behavior can be im-
proved, by deleting only the gateways from fragment f that were actually modified
in the converted fragment fc.

An example for the application of a ConvertFragment operation is shown in Fig-
ure 5.13. There, an existing alternative fragment fa is converted into a fragment fc
by adding a new XOR-split gateway into the fragments structure. The application of
this operation does not result in a fragment type change, i.e. both fragments fa and fc
are alternative fragments. A fragment type change occurs if the logic of the gateways
changes in a fragment, e.g. an AND-split is inserted in an alternative fragment.

fs3
fc

X X
Record

Customer
Data

Compute
Customer
Scoring

< 3.5

3.5

V V’

ConvertFragment X

X X
Record

Customer
Data

Compute
Customer
Scoring

< 3.5

3.5

fa
fs1

fs2 fs2

fs1

fs2

3.53.5 s2 s2

Fig. 5.13 Application of a ConvertFragment Compound Change Operation

82 5 Difference Representation

Having introduced our compound difference meta-model based on compound
change operations, we reason about the completeness of compound change opera-
tions in the next section.

5.3.2 Completeness of Compound Change Operations

Similar to elementary change operations, we have to show that all possible differ-
ences that can occur when a process model V is changed into a process model Vi,
can be represented and resolved using compound change operations. If this is the
case, then the set of compound change operations is complete.

To proof the completeness of compound change operations, we leverage the com-
pleteness of elementary change operations that we have shown in Section 5.2.2. We
assume an elementary change log Δ(V,Vi) (or difference model) is given consisting
of elementary change operations that represent the differences between two given
process models V and Vi. As introduced in Section 5.2, the set of elementary change
operations consists of InsertNode, DeleteNode, InsertEdge, and DeleteEdge. Fur-
ther, we assume that the change log is minimal, i.e. Δ(V,Vi), does not contain ele-
mentary change operations that are redundant or overwrite each other.

Given such a minimal change log Δ(V,Vi), we have to show that each elemen-
tary change operation in this change log gives rise to a compound change opera-
tion involving activity, event, or fragments and no elementary change operation will
be ignored. The following theorem establishes a relationship between the minimal
change log and our compound change operations:

Theorem 2 (Completeness of Compound Change Operations). Given two busi-
ness process models V,Vi and two change logs Δelem(V,Vi) consisting of elemen-
tary change operations and Δcomp(V,Vi) consisting of compound change operations.
Further, let both change logs represent the differences between the process models
V and Vi.

For each elementary change operation ope ∈ Δelem(V,Vi) there exists a compound
change operations opc ∈ Δcomp(V,Vi) such that opc comprises ope.

Proof sketch: Given ope ∈ Δelem(V,Vi):

• If ope = InsertNode we can distinguish two cases:
– If ope inserts an activity then there exists a dedicated InsertActivity opc

exists that comprises ope. Analogously if ope inserts an event a dedicated
InsertEvent opc exists that comprises ope.

– If ope inserts a gateway then the gateway either creates a new fragment or
is inserted into an existing fragment. In the first case, the insertion of the
gateway is comprised in an InsertFragment compound change operation
opc, the second case results in a ConvertFragment operation opc. In both
cases, opc (InsertFragment or ConvertFragment) comprises ope.

• If ope = InsertEdge then this involves integrating new nodes (gateways, ac-
tivities, or events) into the process model, reordering of existing fragments or
nodes, or reconnection of existing nodes in case of deletions.

5.3 Difference Representation Based on Compound Change Operations 83

– In the case of an insertion, there must be a related elementary InsertNode
operation, resulting in an appropriate InsertActivity, InsertEvent, Insert-
Fragment, or ConvertFragment compound change operations opc compris-
ing ope.

– In the case of an reordering of existing fragments or nodes, the elemen-
tary InsertEdge operation (possibly together with other InsertEdge opera-
tions) gives rise to appropriate MoveActivity, MoveEvent, MoveFragment,
or ConvertFragment compound change operations opc comprising ope.

– Finally, in the case of a deletion, there must be a suitable DeleteActivity,
DeleteEvent, DeleteFragment, or ConvertFragment operation opc com-
prising ope.

• The cases op = DeleteNode or DeleteEdge can be treated analogously.

This result shows that the set of compound change operations fulfills the complete-
ness requirement for difference representation. In the next section, we present a
change log consisting of compound change operations representing the differences
between two real world process models.

5.3.3 A Change Log with Compound Change Operations

In this section, we give an example of a concrete change log Δ(V,V2) that represents
the differences between the process models V and V2 introduced in Chapter 1 in
Figure 1.3. Figure 5.144 shows the concrete change log Δ(V,V2).

The operations in Δ(V,V2) are arranged according to their appearance in the pro-
cess model V2 going through the process model from left to right. To enable the
distinction between different inputs and outputs of gateways, we labeled the inputs
with I1..In and the outputs with O1..On. The application of all change operations
contained in the change log resolves the differences between the two process models
completely. That means, the application of all changes on process model V trans-
forms V into V2.

Next, we evaluate compound change operations according to our requirements
for difference representations.

5.3.4 Discussion

Not surprisingly, the change log Δ(V,V2) based on compound change operations
requires far less change operations to represent the differences than a change log
consisting of elementary change operations. (compare Figures 5.1 and 5.14).

Analogously to elementary change operations, we have shown that the set of
compound change operations is complete and all possible differences between two
process models can be represented by an appropriate compound change operation.

4 To prevent line breaks in printed change logs, we may abbreviate the names of change
operations and model elements. For instance, we write MoveAct instead of MoveActivity
or “Check Cust. Data” instead of “Check Customer Data”.

84 5 Difference Representation

Δ(V,V2)
InsertCyclicFragment(V , fLoop, “Record Cust. Data”, “Compute Cust. Scoring”)
InsertActivity(V , “Check Cust. Data”, XOR − JoinO2

f Loop, XOR − S plitI1
f Loop)

InsertActivity(V , “Retrieve add. Data”, XOR − S plitO2
f Loop, XOR − JoinI2

f Loop)

InsertConcurrentFragment(V , fPar , “Prep. Bank Card”, “Prep. Credit Card”)
InsertActivity(V , “Print Credit Card”, AND − S plitO1

f Par , AND − Join : 1I1
f Par)

InsertActivity(V , “Select Credit Card Corp.”, AND − S plitO2
f Par , AND − Join : 2I2

f Par)

InsertActivity(V , “Ask for Credit Limit”, AND − S plitO3s
f Par, AND − Join : 2I1

f Par)

InsertActivity(V , “Calc. Interest Rate”, AND − Join : 2O1
f Par , AND − Join : 1I2

f Par)

DeleteActivity(V , “Set Daily Withd. Limit” , “Prep. Prepaid Bank Card”, XOR − JoinI2
f A)

InsertActivity(V , “Set Credit Limit to 0”, “Prep. Prepaid Bank Card”, XOR − JoinI2
f A)

InsertActivity(V , “Remove Credit Card”, “Set Credit Limit to 0”, XOR − JoinI2
f A)

InsertActivity(V , “Set Interest Rate to 0”, “Remove Credit Card”, XOR − JoinI2
f A)

InsertActivity(V , “Open Account”, AND − Join : 1O1
f Par , End)

Fig. 5.14 Concrete Change Log Δ(V,V2) consisting of Compound Change Operations that
represent the Differences between Process Model V and V2

The application of all compound change operations that describe the differences
between two process models V and Vi, transforms V into Vi.

In contrast to elementary change operations, compound change operations turned
out to be more intuitive to human users. An evaluation has shown that the granu-
larity of compound change operations is suitable for a user-friendly resolution of
differences between process models. By abstracting from individual edge changes
and an automatic reconnection of the control flow in the process models, the appli-
cation of compound change operations results in connected process models. As a
consequence, the merging of different process model versions requires far less user
interaction than merging approaches based on elementary change operations. We
present the result of the evaluation in detail in Appendix A.

Table 5.3 summarizes the suitability of compound change operations for the pur-
pose of difference representation in process model change management.

Table 5.3 Comparison of Elementary and Compound Change Operations according to Re-
quirements for Difference Representations

Requirements for Difference Repre-
sentation

Elem. Change Oper-
ations

Compound Change Op-
erations

[R1] Completeness ✔ ✔

[R2] Understandability ✘ ✔

[R3] Directly Resolvable ✔ ✔

[R4] Connected Process Model ✘ ✔

5.4 Summary and Discussion 85

Overall, a difference representation in terms of compound change operations ful-
fills all our requirements regarding user-friendliness and applicability to be suitable
in change management of process models.

5.4 Summary and Discussion

In this chapter, we have considered the representation of differences between pro-
cess models. We first have established requirements such a representation has to
fulfill. Then, we approached the problem of difference representation by introduc-
ing a difference model based on elementary change operations and showed their
completeness to represent all possible difference.

Since elementary change operations did not fulfill all of our requirements, we
came up with an improved difference model based on compound change operations.
Compound change operations turned out to be more suitable for the representation
of differences in change management of process models. In particular, due to the
coarser granularity of compound change operations the merging of process mod-
els requires far less user interaction than merging approaches based on elementary
changes. In addition, compound change operations ease understandability of the ac-
tual differences between two process models, since they are close to the intention a
business user has in mind when modifying a process model.

In the next chapter, we introduce our approach for the detection of differences
that results in a change log consisting of compound change operations.

6

Difference Detection

In the previous chapter, we have introduced our difference model based on com-
pound change operation as an appropriate means to represent differences between
process models. In this chapter, we present an approach to actually identify differ-
ences between two process models.

As input, the approach expects two process models in the intermediate represen-
tation and a mapping between them as introduced in Chapter 4 (see Figure 6.1). The
result of the difference detection is a reconstructed change log consisting of com-
pound change operations that represent the differences between two process models.
The compound change operations can directly be applied to resolve the differences
they represent. In contrast to a mapping that relates corresponding model elements,
a change log describes how one process model can be transformed into the other.

BPMN
V1

IR Process
Model

V

Mapping
M(V,V1)

+
Change Log

(V,V1)

Fig. 6.1 Difference Detection Overview

In the next section, we establish requirements our approach to difference detec-
tion has to fulfill. In Section 6.2, we present our approach that adds a compound
change operation for each detected difference into a reconstructed change log. In
Section 6.3, we arrange the change log according to the hierarchical structure of
the underlying process models and assign each change operation to the fragment,
which is affected by the operation. We complete the difference detection by specify-
ing position parameters of compound change operations in Section 6.4. Finally, we
conclude with a summary and discussion.

88 6 Difference Detection

6.1 Requirements for Difference Detection

In this section, we discuss requirements a solution for difference detection in process
model change management has to fulfill.

In general, the detection of differences introduced into a pro-
cess model is straightforward in a process-aware information sys-
tem [Dumas et al., 2005, Reichert and Dadam, 1998] that provides change
logs (see, e.g. [Rinderle et al., 2004, Rinderle et al., 2006]). In these scenarios
differences between process models are given and do not need to be detected.

However, in scenarios where process models are developed independently in a
distributed environment, a change log is usually not available. Reasons for this are
either the use of modeling tools that do not provide logging mechanisms or the
exchange of process models across tool boundaries. In such situations, the detection
of differences has to be performed in a state-based manner by comparing process
models before and after changes have been made.

For this purpose, several approaches exist that can roughly be divided into generic
approaches that can deal with different models and approaches that focus on models
in a specific language. A generic approach for matching and difference detection
of UML models is presented in [Kelter et al., 2005]. In this approach, UML class
diagrams are abstracted to a generic data model comparable to our intermediate
representation, which is then used for matching and difference detection. The EMF-
Compare Framework [Eclipse Foundation, 2011c] can be used for matching and dif-
ference detection of EMF-based models. Alanen et al. [Alanen and Porres, 2003]
present algorithms to calculate the difference and union of models based on Meta
Object Facility (MOF) [OMG, 2010c] assuming model elements with unique IDs.
These approaches focus on structural diagrams, such as class diagrams, rather than
on graph-like process models. In addition, they result in elementary changes that are
inconvenient for process model change management.

In our approach, the result of the difference detection shall be a reconstructed
change log consisting of compound change operations that transforms one process
model into the other. To that extent, every detected difference is represented by an
appropriate compound change operation in the reconstructed change log.

For two versions of a process model V and V1, generally multiple change logs
exist that transform one process model version into the other. Figure 6.2 gives an
example.

The process model V describes necessary steps to open a banking account for a
customer. This process model was transformed into process model version V1 by
moving the activity “Open Account” and the highlighted fragment fLoop. A correct
change log Δ(V,V1) is shown in Figure 6.31 consisting of two compound change
operations that transform process model V into V1.

In Figure 6.4, another correct change log Δ′(V,V1) is shown, consisting of four
compound change operations. In contrast to the change log Δ(V,V1), here the activity

1 To prevent line breaks in printed change logs, we abbreviate the names of change oper-
ations and model elements. For instance, we write MoveAct instead of MoveActivity or
“Rec. Cust. Data” instead of “Record Customer Data”.

6.1 Requirements for Difference Detection 89

X XOpen
Account

Record
Customer
Data

Prepare
Bank Card

Prepare
Prepaid

Bank Card

V
Source
Model

Prepare
Credit Card

V1

Editing Operations (V,V1)

Set Daily
Withdrawal

Limit

Compute
Customer
Scoring

Check
Customer
Data

Retrieve
add. Data

X X

fLoopV

fRootV fAltV

X X
Record

Customer
Data

Prepare
Bank Card

Prepare
Prepaid

Bank Card

Prepare
Credit Card

Set Daily
Withdrawal

Limit

Compute
Customer
Scoring

fRootV1

fAltV1

Open
Account

Check
Customer
Data

Retrieve
add. Data

X X

fLoopV1

Fig. 6.2 Two Process Model Versions V and V1

Δ(V,V1)

MoveAct(V , “Open Account”, Start, “Rec. Cust. Data”, XOR − JoinO1
f AltV , End)

MoveFrag(V , fLoopV , XOR − S plitO1
f AltV , “Prep. Bank Card” ,“Rec. Cust. Data”, “Comp. Cust. Scoring”)

Fig. 6.3 Correct Change Log Δ(V,V1) consisting of Compound Change Operations that trans-
forms the Process Model V into V1 (see Figure 6.2)

“Open Account” is not moved to its new position. Instead, all preceding model
elements of “Open Account” are moved before the activity until “Open Account” is
at its new position. Obviously,Δ′(V,V1) contains more compound change operations
than necessary to transform process model V into V1 and is therefore an undesired
change log. With regards to understandability of the difference representation, a
desired change log shall be minimal, i.e. it only consists of change operations that
are essential to transform one process model into the other.

Δ
′
(V,V1)

MoveAct(V , “Rec. Cust. Data”, “Open Account”, “Comp. Cust. Scoring”, Start, “Open Account”)

MoveAct(V , “Comp. Cust. Scoring”, “Open Account”, XOR − JoinO1
f AltV , “Rec. Cust. Data”, “Open Account”)

MoveFrag(V , fAltV , “Open Account”, End, “Comp. Cust. Scoring”, “Open Account”)

MoveFrag(V , fLoopV , XOR − S plitO1
f AltV , “Prep. Bank Card” ,“Rec. Cust. Data”, “Comp. Cust. Scoring”)

Fig. 6.4 Correct Change Log Δ′(V,V1) consisting of Compound Change Operations that trans-
forms the Process Model V into V1 (see Figure 6.2)

To distinguish between desired and undesired change logs, we define the
concept of costs of a change log similar to the cost model introduced in
[Chawathe et al., 1996]. The cost of a change log is based on the costs of

90 6 Difference Detection

individual compound change operations. We denote the costs of a compound
change operation by Cost(CompoundChangeOperation). For convenience, we
assume that the costs for each compound change operations are equal, i.e.
Cost(InsertActivity) = Cost(DeleteActivity) = . . . = Cost(MoveFragment) =
Cost(ConvertFragment) = 1, however, every other cost model is possible. The cost
of a change log is then defined as the sum of the costs of its contained compound
change operations, i.e. Cost(Δ(V,Vi)) =

∑
op∈Δ(V,Vi) Cost(op). Based on this simple

cost model, we define a desired minimal change log as follows:

Definition 6 (Minimal Change Log). Given two business process models V and Vi

and a change log Δ(V,Vi) that represents the differences between the process models
in terms of compound change operations and transforms V into Vi. The change log
Δ(V,Vi) is minimal if there exists no other change log Δ′(V,Vi) with lower costs
Cost(Δ′(V,Vi)) < Cost(Δ(V,Vi)) and also transforms process model V into Vi.

To summarize, an approach to difference detection between process models has to
fulfill the following requirements:

R1 (Reconstruction of a Change Log). The solution for difference detection be-
tween two process models V and Vi must provide a technique to reconstruct
one possible change log Δ(V,Vi) consisting of compound change operations.
Applying all compound change operations contained in Δ(V,Vi) transforms pro-
cess model V into Vi.

R2 (Minimal Change Log). The reconstructed change log Δ(V,Vi) is minimal ac-
cording to Definition 6.

In the following, we introduce our approach to difference detection between process
models in the intermediate representation.

6.2 Approach to Difference Detection

In this section, we present an approach to difference detection between two pro-
cess models that results in a change log consisting of compound change oper-
ations. Our approach builds upon the approach presented by Chawathe et al. in
[Chawathe et al., 1996]. There, an approach is presented that computes a minimal
cost edit script between two ordered trees T1 and T2 that transforms T1 into T2. In
contrast to normal trees, in ordered trees the children of inner nodes have a fixed
order. In their approach edit scripts are generated that consist of four different edit
operations (Insert, Delete, Update, and Move) for the modification of ordered trees.

In general, process models are directed graphs. However, by decomposing pro-
cess models in the intermediate representation into fragments as described in Chap-
ter 3, models in the intermediated representation can be considered as ordered trees
(compare Figure 3.13 and Figure 3.14). Thereby, the difference detection approach
presented in [Chawathe et al., 1996] can be applied. Specifically, we leverage their
approach to identify inserted, deleted and moved model elements between different

6.2 Approach to Difference Detection 91

process models. We extend the approach by the detection of converted fragments to
cope with structural changes of fragments that are specific for process models and
are obtained when a single gateway is inserted into or deleted from an existing frag-
ment. Further, we do not fix the execution order of compound change operations in
our reconstructed change log to a specific order, as it is the case for generated edit
scripts [Chawathe et al., 1996]. By considering dependencies between compound
change operations and dynamically computing position parameters, we enable that
change operations can be applied in an arbitrary order to resolve differences between
process models.

In the following, we first give an overview of our approach, before we describe
the individual steps in detail.

6.2.1 Approach Overview

Figure 6.5 sketches our approach to difference detection. As input, we expect two
process models V , Vi together with a mappingM(V,Vi). The mappingM(V,Vi) has
been created during the matching of two process models as introduced in Chapter 4.
As output of the approach a minimal change log Δ(V,Vi) is returned that contains all
required compound change operations to transform process model V into Vi.

Step 1:
Detection of inserted
nodes and fragments

Step 2:
Detection of deleted
nodes and fragments

Step 3:
Detection ofmoved
nodes and fragments

Step 4:
Detection of

converted fragments

Fig. 6.5 Steps of our Approach to Difference Detection between Process Models

The approach consists of four steps: In Step 1 & 2, we identify differences due
to newly inserted and deleted model elements. Step 3 comprises the detection of
moved model elements and is divided into two sub-steps: First, elements that were
moved between fragments are identified and afterwards, elements that were moved
within a fragment are identified. In Step 4, we identify converted fragments, those
execution orders or execution logics were changed. When a difference is detected
in a step, an appropriate compound change operation is added to the change log
Δ(V,Vi). Note that we do not consider the detection of differences due to updated
attributes of model elements in our approach. The identification of updated attributes
of model elements is generally straight-forward by iterating over all corresponding
model elements and by comparing their attributes. A step to identify such differences
could be easily added to our approach, e.g. as an additional Step 5.

In a three-way merge scenario, the difference detection is performed twice. First,
we compute differences between the source process model V and version V1 based
on the mapping M(V,V1) and we obtain the change log Δ(V,V1). Afterwards, we
compute differences between the source version V and version V2 based on the
respective mappingM(V,V2) resulting in a change log Δ(V,V2).

92 6 Difference Detection

In the following sections, we present the individual steps of our approach. We
first consider the specific differences that are detected in the individual steps and
then describe in detail how these differences can be identified. For each identified
difference an appropriate compound change operation is added to the change log.

6.2.2 Step 1: Detection of Inserted Model Elements

In Step 1, we identify differences due to newly inserted activities, events, and frag-
ments between two process models V and Vi. For each newly inserted model element
a dedicated InsertActivity, InsertEvent, or InsertFragment compound change op-
eration is added to the change log Δ(V,Vi).

According to Definition 4 an InsertDi f f erence between two process models V
and Vi is defined as a model element that exists in process model Vi but not in pro-
cess model V . The identification of InsertDi f f erences caused by the addition of ac-
tivities, events, or fragments is straightforward by iterating over the correspondences
in the setsMN

0−1(V,Vi) andMF
0−1(V,Vi). For each correspondence c ∈ MN

0−1(V,Vi)
attached to an activity or event an InsertActivity operation (InsertEvent respec-
tively) is added to the change log Δ(V,Vi). Analogously for each c ∈ MF

0−1(V,Vi)
attached to a fragment an InsertFragment operation is added to Δ(V,Vi).

Obviously, the detection of inserted model elements leads to a minimal number of
insert compound change operations in the reconstructed change log Δ(V,Vi), since
for every inserted activity, event, or fragment an individual operation is required.

In our example introduced in Figure 1.3 the following InsertActivity and Insert-
Fragment operations are identified between the process models V and V2:

Δ(V,V2)
InsertActivity(V , “Check Customer Data”, ,)
InsertActivity(V , “Retrieve add. Data”, ,)
InsertActivity(V , “Print Credit Card”, ,)
InsertActivity(V , “Select Credit Card Corp.”, ,)
InsertActivity(V , “Ask for Credit Limit”, ,)
InsertActivity(V , “Calc. Interest Rate”, ,)
InsertActivity(V , “Set Credit Limit to 0”, ,)
InsertActivity(V , “Remove Credit Card”, ,)
InsertActivity(V , “Set Interest Rate to 0”, ,)
InsertActivity(V , “Open Account”, ,)
InsertCyclicFragment(V , fLoop, ,)
InsertConcurrentFragment(V , fPar , ,)

Fig. 6.6 Detected InsertActivity and InsertFragment Compound Change Operations between
the Process Models V and V2 (Figure 1.3)

The compound change operations are added to the change log without specifying
their position parameters, i.e. their position in the process model (see Chapter 5).
In our approach, we compute position parameters after the detection of differences.

6.2 Approach to Difference Detection 93

Further, the operations are added to the change log in such a way that they are
directly applicable to resolve the differences between the process model versions V
and Vi. For instance, the activity “Check Cust. Data” from our example constitutes
a difference between the two process model versions V,V2, since the activity only
exists in V2. To represent this difference, we add the operation InsertActivity(V ,
“Check Customer Data”, ,) to the change log that will insert the activity “Check
Cust. Data” also in process model V .

6.2.3 Step 2: Detection of Deleted Model Elements

In Step 2, we identify differences caused by deleted activities, events, and frag-
ments between two process models V and V1. For each deleted model element a
dedicated DeleteActivity, DeleteEvent, or DeleteFragment compound change op-
eration is added to the change log Δ(V,Vi).

Analogously to the identification of InsertDi f f erences, the detection of Delete-
Di f f erences (Definition 5) that are caused by removing activities, events, or
fragments from process model Vi is straightforward by iterating over the cor-
respondences in the sets MN

1−0(V,Vi) and MF
1−0(V,Vi). For each correspondence

c ∈ M1−0(V,Vi) attached to an activity (or event) a DeleteActivity operation (re-
spectively a DeleteEvent operation) is added to the change log Δ(V,Vi). For each
c ∈ MF

1−0(V,Vi) attached to a fragment a DeleteFragment operation is added to
Δ(V,Vi).

Also the detection of deleted model elements results by default in a minimal
change log Δ(V,Vi) with a minimal number of compound change operations, since
for every deleted activity, event, or fragment exactly one operation is added to the
change log.

In our example (Figure 1.2), we obtain the following DeleteActivity operation
between the process models V and V2:

Δ(V,V2)
DeleteActivity(V , “Set Daily Withdrawal Limit”, ,)

Fig. 6.7 Detected DeleteActivity Compound Change Operation between Process Models V
and V2 (Figure 1.3)

6.2.4 Step 3: Detection of Moved Model Elements

In the previous steps, we have identified InsertDi f f erences and Delete-
Di f f erences due to newly inserted or deleted activities, events, and fragments. In
this step, we consider the movement of model elements. Typically, an activity, event,
or fragment is moved in a process model by modifying its incoming and outgoing
edges. The removal and the addition of edges also results in InsertDi f f erences and
DeleteDi f f erences that can be identified by iterating over the mappingME(V,Vi)

94 6 Difference Detection

between edges in the process models V and Vi analogously to the approaches in Step
1 and Step 2.

However, in contrast to the insertion and deletion of activities, events, or
fragments, where each detected InsertDi f f erences and DeleteDi f f erences is rep-
resented by an appropriate compound change operation (e.g. InsertActivity, Delete-
Activity, ...), this is not the case for every InsertDi f f erence or DeleteDi f f erence
caused by the modification of an edge. First, to move a model element several in-
sertions and/or deletions of edges are necessary. In addition, InsertDi f f erences
and DeleteDi f f erences due to newly inserted or deleted edges cannot be assigned
uniquely to individual MoveActivity, MoveEvent, or MoveFragment compound
change operations. As a consequence, an approach to detect moved elements cannot
be based on an analysis of correspondences between edges.

For the detection of moved model elements, we propose an approach based on a
comparison of the relative position of model elements in the process models. Our
approach leverages the decomposition of process models into fragments. In general,
a model element such as an activity, event, or fragment in an IR process model can
be moved in two ways: Either a model element is moved within fragment or a model
element is moved from one fragment into another. We denote the difference that is
caused by the former move type as an Intra-Fragment Move Difference and we
denote the difference that is obtained by the latter move type as an Inter-Fragment
Move Difference. Based on this distinction, we propose detection approaches for
both types of differences next. We begin with Inter-Fragment Move Differences,
followed by Intra-Fragment Move Differences.

Step 3(a): Inter-fragment Move Difference

A model element that is moved from its parent fragment to another fragment causes
a inter-fragment move difference. In Figure 6.2, the movement of the fragment fLoop

in process model V1 from the upper branch of the alternative fragment into the
root fragment results in an inter-fragment move difference. Whenever such an inter-
fragment move difference is detected an appropriate MoveActivity, MoveEvent, or
MoveFragment compound change operation is added to the reconstructed change
log to represent the difference.

The identification of Inter-Fragment Move Differences is performed by iterating
over the correspondences in the sets MN

1−1(V,Vi) and MF
1−1(V,Vi). For each corre-

spondence between a pair of activities (or events) (x, y) ∈ MN
1−1(V,Vi), we compare

whether their parent fragments also correspond to each other, i.e. we check whether
(parent(x), parent(y)) ∈ MF

1−1(V,Vi). If the parent fragments of the corresponding
nodes x, y do not correspond to each other, the nodes y and x are in different frag-
ments and we have identified an Inter-Fragment Move Difference. To resolve the dif-
ference an MoveActivity operation (MoveEvent respectively) is added to the change
log Δ(V,Vi). Analogously, for each pair of corresponding (f , fi) ∈ MF

1−1(V,Vi)
whose parent fragments do not correspond to each other an Inter-Fragment Move
Difference is obtained and a MoveFragment operation is added to Δ(V,Vi).

6.2 Approach to Difference Detection 95

The number of compound change operation for the representation of detected
Inter-Fragment Move Differences is optimal and results in a minimal change log
according to Definition 6. For every Inter-Fragment Move Difference exactly one
move operation is added to the change log Δ(V,Vi).

In our example introduced in Figure 6.2, the following MoveFragment operation
is identified to represent the Inter-Fragment Move Difference between the process
models V and V1:

Δ(V,V1)
MoveFragment(V , fLoopV , , , ,)

Fig. 6.8 MoveFragment Compound Change Operation that resolves the detected Inter-
Fragment Move Difference between Process Models V and V1 (see Figure 6.2)

In the following section, we describe an approach to detect model elements that
were moved within fragments.

Step 3(b): Intra-fragment Move Difference

Changing the order of corresponding model element within their parent fragments
results in intra-fragment move differences. In Figure 6.2, the movement of the ac-
tivity “Open Account” within the root fragment fRootV1 in process model V1 leads to
an intra-fragment move difference between the process models V and V1. Whenever
such an intra-fragment move difference is detected an appropriate MoveActivity,
MoveEvent, or MoveFragment compound change operation is added to the recon-
structed change log to represent the difference.

To identify Intra-Fragment Move Differences, we consider the relative order of
corresponding model elements in sequences with respect to the control flow of the
process model. For that purpose, we first iterate over corresponding sequences. For
every corresponding pair of sequences (f , fi), we compare the order of their con-
tained corresponding children. If there exist two pairs of corresponding children
(a, ai) ∈ M(V,Vi) and (b, bi) ∈ M(V,Vi) that are in different orders (i.e. a before
b in f and bi before ai in fi or vice versa) an Intra-Fragment Move Differences is
detected. To resolve the difference a MoveActivity, MoveEvent, or MoveFragment
operation (depending on the type of the child) is added to the change log Δ(V,Vi).

In contrast to the presented detection approaches for the previous differences,
Intra-Fragment Move Differences may be represented and resolved by different
numbers of move operations. For instance, the Intra-Fragment Move Differences
between the process models V and V1 are correctly resolved by the compound
change operation MoveActivity(V, “OpenAccount′′, S tart, “Rec.Cust.Data′′, XOR−
JoinO1

f AltV , End). However, the differences could also be resolved by three compound
change operations that move the activities “Record Customer Data”, “Compute
Customer Scoring” and the alternative fragment fAltV before the activity “Open Ac-
count”.

96 6 Difference Detection

Obviously, the latter change log contains more operations than necessary and the
former change log shall be preferred, since it is minimal according to Definition 6.
To obtain a minimal change log, we have to detect Intra-Fragment Move Differ-
ences and represent them with a minimal number of compound change operations.
In [Chawathe et al., 1996], an approach is presented to align children of inner nodes
in ordered trees that results in a minimal number of edit operations. The approach
is based on the concept of a longest common subsequence (LCS). The direct chil-
dren of an inner node in an ordered tree constitute a sequence of nodes. To align
corresponding nodes of two such sequences, a LCS is computed. A subsequence is
obtained from a sequence by deleting nodes. The LCS is then iteratively extended
by moving nodes until all corresponding nodes between the two sequences are in
the same order. In the following, we describe how this approach can be used for
the detection of Intra-Fragment Move Differences between process models in the
intermediated representation.

In a process model in the intermediate representation, a sequential fragment f
consisting of model elements that are executed sequentially can be considered as
a sequence of direct children of an inner node in an ordered tree. Analogously, a
subsequence f

′
can be obtained from a sequential fragment f by deleting model

elements contained in f . A longest common subsequence (LCS) for process models
in the intermediate representation is then defined as follows:

Definition 7 (Longest Common Subsequence (LCS)). (inspired by
[Chawathe et al., 1996]) Given two versions V,Vi of a business process model in
the intermediate representation and a mappingM(V,Vi) that relates corresponding
edges, nodes, and fragments between V,Vi. Further, let two sequential fragments
f , fi that contain the model elements x1, . . . , xn and y1, . . . , ym be given. A longest
common subsequence LCS (f , fi) of the sequential fragments f and fi is defined as
a sequence (xi, yi), . . . , (xk, yk) of model element pairs, such that

1. xi, . . . , xk is a subsequence of the sequential fragment f ,
2. yi, . . . , yk is a subsequence of the sequential fragment fi,
3. ∀1≤i≤k≤n(xi, yi) ∈ M(V,Vi),
4. and there are no subsequences xi, . . . , xl in f and yi, . . . , yl in fi that satisfy

conditions 1, 2, and 3 and are longer than xi, . . . , xk and yi, . . . , yk.

We denote the length of a LCS of f and fi by |LCS (f , fi)|. For the computation of an
LCS of two sequential fragments f , fi an algorithm [Myers, 1986] with a quadratic
worst case runtime O(N2) exists, where N = | f |+| fi| is the number of model elements
in the fragments.

In our example introduced in Figure 6.2, an LCS for the sequential root frag-
ments fRootV and fRootV1 is computed using the mappingM(V,V1). The LCS con-
sists of the activities “Record Customer Data”, “Compute Customer Scoring”, and
the alternative fragment fAltV in process model V and their matching counterparts in
V1. The algorithm computes Intra-Fragment Move Difference of the activity “Open
Account” that is represented by the following MoveActivity operation:

6.2 Approach to Difference Detection 97

Δ(V,V1)
MoveActivity(V , “Open Account”, , , ,)

Fig. 6.9 MoveActivity Compound Change Operation that resolves the detected Intra-
Fragment Move Difference between Process Models V and V1 (see Figure 6.2)

A proof that the identification of Intra-Fragment Move Differences based on
LCSs results in minimal change logs can be found in [Chawathe et al., 1996].

6.2.5 Step 4: Detection of Converted Fragments

In Step 4, we identify InsertDi f f erences and DeleteDi f f erences that change the
structure of corresponding fragments between two process models V and Vi or
change the type of corresponding fragments. Typically, such differences are ob-
tained by inserting or deleting gateways and edges in or from existing fragments.
To resolve and represent the differences in the reconstructed change log Δ(V,Vi),
ConvertFragment compound change operations are used that align corresponding
fragments between two process models.

As introduced in Section 5.3.1, for the modification of an existing fragment
generally three different cases exist: First, in a fragment the number of contained
sequential fragments is changed by inserting or deleting gateways and or edges.
Second, the type of the fragment may be changed by adding new gateways to the
fragment or substituting existing gateways. Third, a mixture of the first and the sec-
ond case may be identified. All three different cases are represented and resolved by
ConvertFragment compound change operation.

An example for the first case is shown in Figure 6.10. Due to the reconnection of
the activities “Prepare Debit Card” and “Prepare Credit Card” a new sequential
fragment fDV1 was created in process model V1.

To give an example for the second case if the XOR-split and/or the XOR-join
gateway of the alternative fragment fAltV1 in Figure 6.10 would have been substituted
by gateways with AND-logic, the type of fragment fAltV1 would have been changed.

The identification of converted fragments is performed by iterating over the cor-
respondences between fragments in the set MF

1−1(V,Vi). For each pair of corre-
sponding fragments (f , fi) ∈ MF

1−1(V,Vi), we first check, whether the number of
contained sequential fragment differs. That means, we iterate over the children of
the fragments and try to find a contained sequential fragment that does not have a
corresponding counterpart in the other fragment. Thereby, we identify fragment dif-
ferences due to structural modifications. In our example presented in Figure 6.10, the
fragment fDV1 does not have a corresponding counterpart in fAltV . Accordingly, the
structures of the corresponding parent fragments fAltV , fAltV1 differ and a Convert-
Fragment operation is added to the reconstructed change log Δ(V,V1).

In a second check, we evaluate for every pair of corresponding fragments (f , fi) ∈
MF

1−1(V,Vi), whether the type of the fragment was changed. Therefore, we iter-
ate over contained gateways in the fragments f , fi. If a gateway is found that does

98 6 Difference Detection

X X
Record

Customer
Data

Compute
Customer
Scoring

Prepare
Credit Card

Prepare
Prepaid

Bank Card

Prepare
Debit Card

X X
Record

Customer
Data

Prepare
Debit Card

Prepare
Prepaid

Bank Card

V
Source
Model

Prepare
Credit Card

Set Daily
Withdrawal

Limit

Compute
Customer
Scoring

fRootV fAltV

V1

Set Daily
Withdrawal

Limit

fRootV1 fAltV1

Editing Operations (V,V1)

fBV

fCV

fBV1

fCV1

fDV1

Fig. 6.10 Example for Differences between the Fragments fAltV and fAltV1 in Process Models
V and V1 that are represented and resolved by a ConvertFragment Operation

not have a corresponding counterpart in the other process model and no Convert-
Fragment operation for this fragment was added to the change log before, we add a
ConvertFragment operation to the reconstructed change log Δ(V,V1).

The detection of converted fragments leads to a minimal number of Convert-
Fragment compound change operations in the reconstructed change log Δ(V,Vi),
for every converted fragment exactly one ConvertFragment operation is added to
Δ(V,Vi).

In our example introduced in Figure 6.10, the structure of the fragment fAltV1 was
modified by inserting and deleting edges. Thereby, a new fragment fDV1 is created
that does not have a corresponding counterpart in fAltV . To represent the differences
between the process model V and V1, a ConvertFragment operation is added to the
change log Δ(V,V1) that adds a new sequential fragment fDV as a new branch in
the alternative fragment fAltV . For completeness, a MoveActivity operation is also
added to the change log that moves the activity “Prepare Debit Card” from the
upper branch in the newly created fDV . It is worth to mention, that this MoveActivity
operation would have been detected in Step 3(a) of our approach. The reconstructed
change log Δ(V,V1), which transforms the process model V into V1 is shown next:

6.2.6 Summary

In the previous sections, we have introduced our approach for difference detection
between business process models and the representation of differences in terms of
compound change operations. Based on two process models V , Vi and a mapping
M(V,Vi) between them, we first have identified differences due to newly inserted

6.2 Approach to Difference Detection 99

Δ(V,V1)
ConvertFragment(V , fAltV , fAltV1, ,)
MoveAct(V , “Prepare Debit Card”, , , ,)

Fig. 6.11 ConvertFragment and MoveActivity Compound Change Operations that represents
the Difference between Process Models V and V1 from Figure 6.10)

and deleted model elements. Then, we have identified moved model elements. Fi-
nally, we have considered the identification of converted fragments, those execution
order or execution logic was changed. As described above, we do not consider the
detection of differences due to updated attributes of model elements in our approach.

In the case of our example, we obtain the reconstructed change log Δ(V,V2)
shown in Figure 6.12 that represents the differences between the process models
V and V2 from Figure 1.3.

Δ(V,V2)
InsertActivity(V , “Check Customer Data”, ,)
InsertActivity(V , “Retrieve add. Data”, ,)
InsertActivity(V , “Print Credit Card”, ,)
InsertActivity(V , “Select Credit Card Corp.”, ,)
InsertActivity(V , “Ask for Credit Limit”, ,)
InsertActivity(V , “Calc. Interest Rate”, ,)
InsertActivity(V , “Set Credit Limit to 0”, ,)
InsertActivity(V , “Remove Credit Card”, ,)
InsertActivity(V , “Set Interest Rate to 0”, ,)
InsertActivity(V , “Open Account”, ,)
InsertConcurrentFragment(V , fPar , ,)
InsertCyclicFragment(V , fLoop, ,)
DeleteActivity(V , “Set Daily Withd. Limit”, ,)

Fig. 6.12 Detected Compound Change Operations between the Process Models V and V2

The reconstructed change log is at the moment a simple list consisting of com-
pound change operations as introduced in Chapter 5. In contrast to a change log that
is recorded during the modification of process model versions, a valid execution
order of the change operations and information about the precise position where a
change operation takes place is missing.

In the remainder of this chapter, we first introduce an approach to structure
change operations in a change log according to the hierarchical structure of the
underlying business process models. Then, in Section 6.4, we consider position pa-
rameters of change operations to complete the reconstruction of a change log.

100 6 Difference Detection

6.3 Hierarchical Change Log

At the moment, our reconstructed change log is a simple list consisting of compound
change operations (see Figure 6.12). Although compound change operations are way
more intuitive than elementary change operations, since they comprise related ele-
mentary changes, it is still sometimes difficult to grasp the actual differences between
the process models and their relationships. In particular if the process models differ
to a large extent. For instance, from the change log shown in Figure 6.12 it is not
clear that the activity “Check Customer Data” is inserted in the fragment fLoop.

Inspired by the approaches for differences visualization presented in
[Ohst et al., 2003] and [Chawathe et al., 1996], we aim to enable a more intuitive
and natural understanding of the differences between process models. For that pur-
pose, we arrange change operations according to the structure of the underlying
process models. The structure of process models is given by the composition hierar-
chy of their contained fragments. Based on the composition hierarchy of fragments
in process models, change operations can be associated to the fragment in which
they occur. In Chapter 3, we have made the fragment hierarchy of process models
explicit in terms of process structure trees (PST).

In the following, we first introduce a joint process structure tree (Joint−PS T) that
is constructed by overlapping the PS T s of the underlying process models. Then we
assign change operations to the fragments of the Joint−PS T to obtain a hierarchical
change log.

Definition 8 (Joint Process Structure Tree (Joint − PS T)). Given two business
process models V,Vi in the intermediate representation and their process structure
trees PS T (V), PS T (Vi). Further, let a mappingM(V,Vi) between the process mod-
els V,Vi be given. A Joint−PS T (V,Vi) of the process models V,Vi is then defined as
the union of the process structure trees PS T (V) and PS T (Vi). A Joint− PS T (V,Vi)
can be constructed as follows:

• for a corresponding pair for fragments (f , fi) ∈ MF
1−1(V,Vi), a new fragment f j

is inserted into Joint − PS T (V,Vi) with parent(f j) = parent(f).
• for a fragment f ∈ MF

1−0(V,Vi), a new fragment f j is inserted into Joint −
PS T (V,Vi) with parent(f j) = parent(f).

• for a fragment fi ∈ MF
0−1(V,Vi), a new fragment f j is inserted into Joint −

PS T (V,Vi) with parent(f j) = parent(fi).

Based on the Joint − PS T , we can define a hierarchical change log. The idea of the
hierarchical change log is to arrange change operations according to the structure of
the process model by associating to each fragment the compound change operations
that affect it or take place in the fragment. A hierarchical change log is defined as
follows:

Definition 9 (Hierarchical Change Log). Given two business process models V,Vi,
their decomposition into fragments PS T (V), PS T (Vi), and a change log Δ(V,Vi)
representing the differences between V,Vi in terms of compound change operations.

6.3 Hierarchical Change Log 101

A hierarchical change log that transforms V into Vi is the joint process structure tree
Joint − PS T (V,Vi) whose nodes are enriched with compound change operations as
follows:

• If op = InsertActivity, InsertEvent, DeleteActivity, or DeleteEvent then op is
associated to the node representing the fragment in which op takes place.

• If op = MoveActivity or MoveFragment then op is associated to the node rep-
resenting the fragment into which the element is moved and to the node repre-
senting the fragment out of which the element is moved.

• If op = InsertFragment, DeleteFragment, or ConvertFragment, then op is
associated to the node in the Joint − PS T (V,Vi) representing this fragment.

froot

fAltfLoop

InsertCyclicFragment
(V, fLoop, ,)

InsertActivity
(V, “Open Account”, ,)

InsertActivity
(V, “Set Credit Limit to 0”, ,)

fAlt-A fAlt-BfLoop-A fLoop-B

InsertActivity
(V “Retrieve add Data”)

InsertActivity
(V, “Check Customer Data”, ,)

InsertActivity
(V, “Remove Credit Card”, ,)

InsertActivity
(V, Set Interest Rate to 0”, ,)

fPar

fPar-A fPar-B fPar-C fPar-D

InsertConcurrentFragment
(V, fPar, ,)

(V, Retrieve add. Data , ,)

I tA ti it

DeleteActivity
(V, “Set Daily Withdrawal Limit”, ,)

InsertActivity
(V, “Print Credit Card Contract”, ,)

InsertActivity
(V, “Select Credit Card Corp.”, ,)

InsertActivity
(V, “Calculate Interest Rate”, ,)

InsertActivity
(V, “Ask for Credit Limit”, ,)

Fig. 6.13 Hierarchical Change Log that represents the Differences between the Process Mod-
els V and V2 (see Figure 1.3)

Figure 6.13 shows a hierarchical change log for the two process model ver-
sions V and V2 introduced in Figure 1.3 of Chapter 1. For example, the Insert-
CyclicFragment operation inserts the fragment fLoop in the root fragment froot. The
InsertConcurrentFragment inserting the fragment fPar , occurs in the upper branch
fAlt−A of the alternative fragment fAlt. Within the newly inserted unstructured par-
allel fragment fPar are several InsertActivity operations. Further operations such as
the DeleteActivity operation is also associated to its fragment.

In some scenarios, for instance due to space limitations, a textual representation
of the hierarchical change log is more suitable than the visual representation
shown in Figure 6.13. A hierarchical change log can be transformed into a textual
representation by printing the fragment hierarchy and contained compound change
operations in terms of an indented list. In the case that a fragment is directly affected

102 6 Difference Detection

by a compound change operation, the fragment is represented by the operation itself.
Figure 6.14 shows the textual representation of the hierarchical change log from
above.

Δ(V,V2)
Root Fragment fRoot

InsertCyclicFragment(V , fLoop, ,)
fLoop−A

InsertActivity(V , “Check Customer Data”, ,)
fLoop−B

InsertActivity(V , “Retrieve add. Data”, ,)
Alternative Fragment fAlt

fAlt−A

InsertConcurrentFragment(V , fPar , ,)
fPar−A

InsertActivity(V , “Print Credit Card”, ,)
fPar−B

InsertActivity(V , “Select Credit Card Corp.”, ,)
fPar−C

InsertActivity(V , “Ask for Credit Limit”, ,)
fPar−D

InsertActivity(V , “Calc. Interest Rate”, ,)
fAlt−B

DeleteActivity(V , “Set Daily Withd. Limit”, ,)
InsertActivity(V , “Set Credit Limit to 0”, ,)
InsertActivity(V , “Remove Credit Card”, ,)
InsertActivity(V , “Set Interest Rate to 0”, ,)

InsertActivity(V , “Open Account”, ,)

Fig. 6.14 Textual Representation of the Hierarchical Change Log representing the Differences
between the Process Models V and V2 (see Figure 1.3)

In existing model versioning approaches, differences between mod-
els are visualized differently. Some approaches use textual represen-
tation change operations, e.g. simple edit scripts containing change
operations are used in [Alanen and Porres, 2003]. Also in ADEPT
[Rinderle et al., 2006, Rinderle et al., 2007], simple change logs in terms of
lists are used. A difference representation in terms of a simple list may harden
the understandability of differences, as described above. More elaborated ap-
proaches are based on an overlapping of the underlying models. For instance, in
[Ohst et al., 2003], the differences between versions of UML models (e.g. class or
object diagrams) are visualized by computing a unified model for given versions of
a UML diagram. In this unified model, common model elements of the underlying
versions are overlapped and specific parts are highlighted. Thereby, newly added or

6.4 Position Parameters of Compound Change Operations 103

deleted model elements are directly visible. By coloring model elements that are
specific to a certain version, also version specific differences can be represented. In
[Chawathe et al., 1996], a visual delta tree for two given ordered trees is computed.
Differences between the ordered trees are represented in the delta tree by annotating
nodes with change operations.

In both approaches, differences are visualized based on the complete underly-
ing models, resulting in difference visualizations that potentially contain several
unchanged model elements. These unchanged model elements harden the actual
understandability of the difference representation, in particular if large models are
compared. To circumvent this problem, in [Ohst et al., 2003] a filtering mechanism
is presented that can be used to restrict the visualization of differences to a certain
type.

In contrast to these approaches, we construct a hierarchical change log by ab-
stracting from the underlying models and focusing on the fragment hierarchy in the
process models. Thereby, we obtain difference visualizations that are significantly
smaller compared to the underlying process models. In addition to the visual repre-
sentation of differences, we propose the use of a textual version of the hierarchical
change log that represents nested fragments and change operations by an indented
list as shown in Figure 6.14.

Using the hierarchical change log, either in visual or textual representation, a
business user can easily identify the areas of the process model that have been mod-
ified. Moreover, the actual intention of the changes is easier to grasp. A hierarchical
change log supports a business user to concentrate on those differences that are rel-
evant for a certain area in the process model.

In the next section, we complete the detection of differences by specifying posi-
tion parameters of change operations.

6.4 Position Parameters of Compound Change Operations

During the detection of differences, compound change operations are added
to a reconstructed change log Δ(V,Vi). These change operations are ini-
tially partially specified. For example, for the compound operation Insert-
Activity(V, “Open Account”,−,−) the last two parameters, which we denote as
position parameters, are not defined yet. That means, the operations are underspec-
ified and cannot be applied directly. To make change operations applicable, we have
to specify their position parameters. Position parameters of compound change oper-
ations consist of two nodes in the process model: a preceding node (predecessor) and
a succeeding node (successor) that specify possible positions in a process model. If
predecessor and successor are directly connected they specify a unique position in
a process model. If predecessor and successor are not directly connected, a set of
possible positions is specified.

In the case of an InsertActivity or InsertFragment(V, f , x, y) operation, position
parameters specify the new position to which an activity or fragment is inserted.
In the case of a DeleteActivity or DeleteFragment operation, position parameter
specify the position from which an activity or fragment is removed from. In the case

104 6 Difference Detection

of a MoveActivity or MoveFragment operation, two positions are specified: An old
position from which an activity or fragment is moved from and a new position to
which an activity or fragment is moved to. Finally, for ConvertFragment operations
their current (i.e. old) position is specified.

For clarification, Figure 6.15 shows the reconstructed change log of our ex-
ample with specified position parameters. For the moment, we assume that po-
sition parameter can be computed. For instance using the approach presented in
[Chawathe et al., 1996], which specifies position parameters in the order in which
change operations are detected between two model. In the next chapter, we will
present an algorithm for position parameter computation of compound change
operations, which is especially suited for process model change management.

Δ(V,V2)
Root Fragment fRoot

InsCyclFrag(V , fLoop, “Record Cust. Data”, “Compute Cust. Scoring”)
fLoop−A

InsAct(V , “Check Customer Data”, XOR − JoinO2
f Loop, XOR − S plitI1

f Loop)

fLoop−B

InsAct(V , “Retrieve add. Data”, XOR − S plitO2
f Loop, XOR − JoinI2

f Loop)

Alternative Fragment fAlt

fAlt−A

InsConFrag(V , fPar , “Prep. Bank Card”, “Prep. Credit Card”)
fPar−A

InsAct(V , “Print Credit Card”, AND − S plitO1
f Par , AND − Join : 1I1

f Par)

fPar−B

InsAct(V , “Select Credit Card Corp.”, AND − S plitO2
f Par , AND − Join : 2I2

f Par)

fPar−C

InsAct(V , “Ask for Credit Limit”, AND − S plitO3s
f Par, AND − Join : 2I1

f Par)

fPar−D

InsAct(V , “Calc. Interest Rate”, AND − Join : 2O1
f Par , AND − Join : 1I2

f Par)

fAlt−B

DelAct(V , “Set Daily Withd. Limit”, “Prep. Prepaid Bank Card”, XOR − JoinI2
f Alt)

InsAct(V , “Set Credit Limit to 0”, “Prep. Prepaid Bank Card”, XOR − JoinI2
f Alt)

InsAct(V , “Remove Credit Card”, “Set Credit Limit to 0”, XOR − JoinI2
f Alt)

InsAct(V , “Set Interest Rate to 0”, “Remove Credit Card”, XOR − JoinI2
f Alt)

InsAct(V , “Open Account”, XOR − JoinO1
f Alt , End)

Fig. 6.15 Hierarchical Change Log consisting of Compound Change Operations with speci-
fied Position Parameters.

Based on the change log Δ(V,V2) and the contained compound change operations
with specified position parameters as shown in Figure 6.15, the differences between
the process model V and V2 can be resolved. By applying the compound change
operation on the process model V , V is transformed into process model V2.

6.5 Summary and Discussion 105

However, the compound change operations cannot be applied in any order, since
the position parameters introduce dependencies between some of the operations.
For instance, the bold printed operation InsertActivity(V , “Set Credit Limit to 0”,
“Prep. Prepaid Bank Card”, XOR−JoinI2

f Alt) must be applied before operation Insert-

Activity(V , “Remove Credit Card”, “Set Credit Limit to 0”, XOR−JoinI2
f Alt), because

the latter operation uses the inserted activity “Set Credit Limit to 0” of the former
operation as position parameter. That means, the latter operation is dependent on
the application of the former operation. Further if position parameters of compound
change operations would have been specified differently, we would obtain other
dependencies between the change operations.

As a consequence, dependencies between compound change operations have to
be taken into account before change operations can be applied in order to merge to
process model. We discuss dependencies between change operations and the com-
putation of position parameters extensively in the next chapter.

6.5 Summary and Discussion

In this chapter, we presented an approach to detect differences between different
process model versions that results in a reconstructed change log consisting of com-
pound change operations. First of all, we introduced requirements a solution for
difference detection has to fulfill. Then, we proposed our approach to difference de-
tection that is divided into four steps. Each step is dedicated to identify a certain type
of difference between two process models, which is represented by an appropriate
compound change operation in the reconstructed change log.

To enable an intuitive and natural understanding of the differences between pro-
cess models, we transformed the reconstructed change log into a hierarchical change
log. The idea of a hierarchical change log is to arrange compound change operations
according to the structure of the underlying process models. Thereby, differences are
directly located to the fragments of a process model, which are affected by the dif-
ferences. A hierarchical change log can also be beneficial for identifying groups of
change operations that can be applied together, e.g. in terms of a change transaction.

Finally, as an outlook for the next chapter, we specified position parameter for
compound change operations in a reconstructed change log Δ(V,Vi). Based on the
reconstructed change logs from this chapter, we consider dependencies between
compound change operations in the next chapter. There, we show how the computa-
tion of position parameters directly influences the number of dependencies between
compound changes and how a dynamic specification of compound change opera-
tions enables business users to resolve differences between business process models
without being unnecessarily restricted to a certain execution order of compound
change operations.

7

Dependency Analysis

In the previous chapter, we reconstructed a change log consisting of compound
change operations that represent differences between different process model ver-
sions. Before we can apply the compound change operations in order to merge dif-
ferent process model versions, possible dependencies between change operations
must be identified.

Informally if two change operations are dependent, then the second one requires
the application of the first one. For instance, before an activity can be inserted into
a new fragment, the fragment itself must be inserted. Otherwise it can happen that
applying a dependent change operation leads to a potentially unconnected process
model and problems when applying following change operations. For example, in-
serting an activity into a fragment that does not exist yet, leads to an unconnected
activity and problems when later inserting the fragment.

In this chapter, we introduce our approach to dependency analysis between com-
pound change operations of process models. We begin by defining requirements
for dependencies in Section 7.1. We approach the identification of dependencies
by applying existing theory on dependent graph transformations and establish the
notion of transformation dependencies between compound change operations in
Section 7.2. In Section 7.3, we then show how the dependency detection can be
further improved and introduce the concept of Joint − PS T dependencies between
change operations. Using dynamic specification of compound change operations,
this approach results in fewer dependencies between change operations and thus
more freedom when merging different process model versions.

Finally, we conclude with a summary and discussion in Section 7.4. The fol-
lowing sections of this chapter are partially based on our earlier publications
[Küster et al., 2009, Küster et al., 2010].

7.1 Requirements for Dependency Analysis

In this section, we establish requirements for dependency analysis between change
operations of business process models.

108 7 Dependency Analysis

We assume that a reconstructed change log Δ(V,Vi) consisting of compound
change operations is given, which can be used to create a consolidated model VM

out of a source process model V and a descendant version Vi. In an exemplary dis-
tributed modeling scenario, a process model representative will inspect each change
operation in the change log and decide which operation to apply in order to con-
struct a consolidated model VM . Thereby, he applies the changes in an iterative way
and continues to do so until he is satisfied with the resulting model VM.

To that extent, a dependency concept for change operations is needed to ensure
that only operations that do not depend on other operations can be applied at once.
Otherwise it can happen that applying a change operation leads to a potentially un-
connected process model and problems when applying following change operations.

With regards to the reconstructed change log from the previous chapter (see Fig-
ure 6.15), the process model representative might apply Operations A and B as
shown below. The application of Operation B requires that Operation A was applied
before, because B uses the activity “Set Credit Limit to 0” that is inserted by A. In
other words, it is not possible to insert the activity “Remove Credit Card” without
having inserted the activity “Set Credit Limit to 0”, since their operations depend
on each other.

(A) InsAct(V , “Set Credit Limit to 0”, “Prep. Prepaid Bank Card”, XOR − JoinI2
f Alt)

(B) InsAct(V , “Remove Credit Card”, “Set Credit Limit to 0”, XOR − JoinI2
f Alt)

The detection of dependencies between change operations heavily relies on the spec-
ified position parameters of the change operations. That means, depending on the
specified position parameters of change operations different dependencies may be
computed. For instance, in our example from above, the application of Operation B
depends on the application of Operation A. If the position parameters of both opera-
tions would have been specified as follows, then the dependency would change and
the application of Operation A would depend on a prior application of Operation B.

(A) InsAct(V , “Set Cr. Limit to 0”, “Prep. Prepaid Bank Card”, “Rem. Credit Card”)
(B) InsAct(V , “Rem. Credit Card”, “Prep. Prepaid Bank Card”, XOR − JoinI2

f Alt)

As a consequence, the specification of position parameters must be taken into ac-
count, when developing a solution for dependency detection between compound
change operations. Position parameters must be chosen in such a way that each
change operation, which potentially can be applied in isolation, is not dependent on
any other operation.

We have already discussed that the application of all change operations in the re-
constructed change log Δ(V,Vi) transforms the process model V into process model
Vi. That means, the two process models V and Vi are merged by applying change
operations and the consolidated process model VM is obtained. In the case that all
change operations in Δ(V,Vi) are applied, VM will be equivalent to the process model
version Vi. However, the consolidation of different process models V,Vi into a con-
solidated model VM shall also support the scenario, where just a subset S ⊆ Δ(V,Vi)

7.2 Transformation Dependent Compound Change Operations 109

of the change operations is applied to obtain VM . This requires that a business user
shall be able to select only some of the compound change operations that are ap-
plied to obtain the consolidated process model VM . To that extent, the selection of
a subset of change operations shall not be unnecessarily restricted by the detected
dependencies.

Similarly, the application of compound change operations to consolidate differ-
ent process model versions shall not be prescribed unnecessarily by dependencies.
A user shall have the freedom to apply change operations, which can be applied
independently in an arbitrary order.

To summarize, an approach to dependency analysis between compound change
operations has to fulfill the following requirements:

R1 (Dependency Detection) The dependency analysis must identify all dependen-
cies between the compound change operations in a change log.

R2 (Application of a Subset of Change Operations) A business user shall be able to
select only some of the compound change operations that are applied to obtain a
consolidated process model. This selection shall not be restricted unnecessarily
by the detected dependencies.

R3 (Arbitrary Application Order) A consolidated version of a process model can
be created by applying independent operations in an arbitrary order.

Based on the reconstructed change log that we have computed in Chapter 6, we
present an approach to compute dependencies between compound change opera-
tions based on dependent model transformations in the next section.

7.2 Transformation Dependent Compound Change Operations

In this section, we present an approach to compute dependencies between compound
change operations with specified position parameters. In the following, we give an
overview of the approach. This section and its subsections are based on our earlier
publications [Küster et al., 2009, Küster et al., 2010].

7.2.1 Approach Overview

As a running example for dependency detection, we consider the reconstructed
change log that we have introduced in the previous chapter. For convenience, this
change log is shown again in Figure 7.1. For each compound change operation posi-
tion parameters have been computed. These position parameters specify the position
where the application of the change operation takes place in a process model.

In this section, we present an approach for the computation of dependencies
between change operations with specified position parameters. For that purpose,
we will leverage the notion of dependencies between model transformations and
describe how dependent model transformations are identified in Section 7.2.2. In
Section 7.2.3, we formalize compound change operation types in terms of model
transformations. Based on this formalization, we derive dependencies between

110 7 Dependency Analysis

Δ(V,V2)
Root Fragment fRoot

InsCyclFrag(V , fLoop, “Record Cust. Data”, “Compute Cust. Scoring”)
fLoop−A

InsertActivity(V , “Check Customer Data”, XOR − JoinO2
f Loop, XOR − S plitI1

f Loop)

fLoop−B

3InsAct(V , “Retrieve add. Data”, XOR − S plitO2
f Loop, XOR − JoinI2

f Loop)

Alternative Fragment fAlt

fAlt−A

InsConFrag(V , fPar , “Prep. Bank Card”, “Prep. Credit Card”)
fPar−A

InsAct(V , “Print Credit Card”, AND − S plitO1
f Par , AND − Join : 1I1

f Par)

fPar−B

InsAct(V , “Select Credit Card Corp.”, AND − S plitO2
f Par , AND − Join : 2I2

f Par)

fPar−C

InsAct(V , “Ask for Credit Limit”, AND − S plitO3s
f Par, AND − Join : 2I1

f Par)

fPar−D

InsAct(V , “Calc. Interest Rate”, AND − Join : 2O1
f Par , AND − Join : 1I2

f Par)

fAlt−B

DelAct(V , “Set Daily Withd. Limit”, “Prep. Prepaid Bank Card”, XOR − JoinI2
f Alt)

InsAct(V , “Set Credit Limit to 0”, “Prep. Prepaid Bank Card”, XOR − JoinI2
f Alt)

InsAct(V , “Remove Credit Card”, “Set Credit Limit to 0”, XOR − JoinI2
f Alt)

InsAct(V , “Set Interest Rate to 0”, “Remove Credit Card”, XOR − JoinI2
f Alt)

InsAct(V , “Open Account”, XOR − JoinO1
f Alt , End)

Fig. 7.1 Compound Change Operations with specified Position Parameters representing the
Differences between the Process Models V and V2 (see Figure 1.3).

change operation types and capture them in a dependency matrix in Section 7.2.4.
In addition, we compute dependencies for our running example and come up with
an execution order determining how the operations can be applied while consider-
ing their dependencies. Finally, we evaluate this approach for dependencies analysis
whether it fulfills our requirements.

7.2.2 Compound Change Operations and Model Transformation
Rules

In this section, we relate compound change operations to model transformations.
For that purpose, we briefly recap the existing theory of model transformations and
show how a change operation can be formalized in terms of a model transformation.

Each compound change operation op for a model V can be viewed as a model
transformation rule on the process model V transforming it to a process model VM .
A model transformation rule can be formalized as a typed attributed graph transfor-
mation rule [Küster, 2006, de Lara et al., 2007, Mens et al., 2007], where the typed

7.2 Transformation Dependent Compound Change Operations 111

graph is represented by the meta-model of the intermediate representation (see
Chapter 3).

We distinguish between change operation type and a concrete change operation:
A change operation type (such as InsertActivity(v, a, x, y)) describes a set of con-
crete change operations. By replacing the parameters of a change operation type
with model elements of the models V and Vi, a concrete change operation is ob-
tained. Examples for concrete compound change operations can be found in the
reconstructed change log Δ(V,V2) shown in Figure 7.1.

The behavior of a change operation type op can be specified using a typed at-
tributed graph transformation rule opr. A typed graph transformation rule opr : L→
R consists of a pair of typed instance graphs L,R such that the union is defined. A

graph transformation step from a graph G to a graph H, denoted by G
opr(o)
=⇒ H, is

given by a graph homomorphism o : L∪R→ G∪H, called occurrence, such that the
left hand side L is embedded into G and the right hand side R is embedded into H and
precisely that part of G is deleted which is matched by elements of L not belonging
to R, and, that part of H is added which is matched by elements new in R. Figure 7.2
shows the typed attributed graph transformation rule for InsertActivity(V, a, x, y).

x:Node e1:Edge y:Node x:Node e1:Edge a:Activity e2:Edge y:Node

InsertActivity(V, a, x, y)

f:Fragment f:Fragment

V:Process V:Process

Fig. 7.2 Compound Change Operation Type: InsertActivity

The theory of graph transformation provides the basis for defining the semantics
of a change operation type as follows: Given a change operation type op together
with its rule opr, a concrete change operation on a model V leading to a model Vi

conforming to the type op is modeled by a change operation application of the rule
opr to V transforming it to Vi. Formally, this is represented by a graph transforma-

tion GV
opr (o)
=⇒ HVi where opr is applied at an occurrence o to the graph GV leading to

a new graph HVi (where GV and HVi are represented as typed graphs obtained from

the models V and Vi). We also write V
op
=⇒ Vi or V

op(o)
=⇒ Vi. To represent a concrete

change operation, we write op(o).
Formally, the occurrence morphism o represents a binding between the change

operation type and the models V and Vi. It maps nodes and edges of L and R to G and
H. An occurrence morphism can be specified by a set of parameters x1, ..., xn in the
change operation type op and their instantiation in the concrete change operation
op(o). For each rule opr, we distinguish between parameters that are preserved,
deleted or newly created, so xi ∈ pres(opr) ∪ del(opr) ∪ new(opr).

112 7 Dependency Analysis

As an example, consider the change operation type InsertActivity(v, a, x, y) and
the change operation InsertActivity(V , “Set Credit Limit to 0”, “Prep. Prepaid Bank
Card”, XOR− JoinI2

f Alt). This implies an occurrence morphism mapping v, a, x and y
to the process model V and its contained model elements. In this case, v is mapped
to the process model V , x to “Prep. Prepaid Bank Card”, y to XOR − JoinI2

f Alt, and
a is mapped to the activity “Set Credit Limit to 0”, which is newly created.

For the formalization of our set of compound change operation types,
we use a shorthand which only includes those elements of the occurrence
morphism such that the morphism is uniquely determined. For example, we
write InsertActivity(v, a, x, y) instead of InsertActivity(v, f , a, e1, b, x, e2), where
f , a, e1, b, x, e2 refers to the elements defined in the transformation rule (see
Figure 7.2).

In the next section, we formalize the compound change operation types from our
compound difference model introduced in Chapter 5.

7.2.3 Formalization of Compound Change Operation Types

In the following, we briefly consider the semantics of compound change operation
types by formalizing them in terms of graph transformation rules.

The semantics of the InsertActivity operation type is formally specified by the
following operational graph transformation rule given in Figure 7.3. Applying this
rule creates a new activity a and connects it with a preceding node x and a suc-
ceeding node y. Similarly, the graph transformation in Figure 7.4 formalizes the
semantics of the InsertFragment change operation type. First a new fragment f is
created that is integrated in the control flow of the process model V by connecting
it to a a preceding node x and a succeeding node y.

x:Node :Edge y:Node x:Node :Edge a:Activity :Edge y:Node

InsertActivity(V, a, x, y)

:Fragment :Fragment

V:Process V:Process

Fig. 7.3 Graph transformation rule describing the behavior of the InsertActivity operation

x:Node :Edge y:Node x:Node :Edge f:Fragment :Edge y:Node

InsertFragment(V,f,x,y)

:Fragment :Fragment

V:Process V:Process

Fig. 7.4 Graph transformation rule describing the behavior of the InsertFragment operation

7.2 Transformation Dependent Compound Change Operations 113

Figures 7.5 and 7.6 visualize the graph transformation rules for the DeleteActivity
compound change operation and the DeleteFragment change operation. In both
rules, an existing activity a or fragment f is removed from a process model V and
the control flow between the former predecessor x and successor y is reestablished.

x:Node :Edge y:Nodex:Node :Edge a:Activity :Edge y:Node

DeleteActivity(V,a,x,y)

:Fragment :Fragment

V:Process V:Process

Fig. 7.5 Graph transformation rule describing the behavior of the DeleteActivity operation

x:Node :Edge y:Node

DeleteFragment(V,f,x,y)

x:Node :Edge f:Fragment :Edge y:Node

:Fragment :Fragment

V:Process V:Process

Fig. 7.6 Graph transformation rule describing the behavior of the DeleteFragment operation

The MoveActivity change operation type is formalized by the graph transfor-
mation rule presented in Figure 7.7. Figure 7.8 visualizes a graph transformation
rule that determines the semantics of the MoveFragment operation. Looking at the
behavior, the MoveActivity and the MoveFragment change operation types are a
composition of the previously presented compound change operation types. That
means, an activity a (or fragment f) is first removed from its previous position in a
process model V and then introduced at a new position in V . The control-flow in V
is reestablished by connecting the former predecessor v and successor w as well as
the new predecessor and successor x, y with a (or f).

Finally, the model transformation rule in Figure 7.9 is a shorthand formalization
of the ConvertFragment operation type. In general, a ConvertFragment operation
can be described by an arbitrary sequence of elementary change operations as in-
troduced in Section 5.2.1. That means, whenever the structure of the fragment f is
changed by adding or deleting a contained sequence, a ConvertFragment operation
is obtained. To change the structure of the fragment f generally two ways exist: Ei-
ther, a control node is added to (or removed from) f or a path between two existing
control nodes is introduced in f (or removed from f).

Based on the formalized compound change operations, we present an approach
to compute dependencies between different compound change operations in the next
section.

114 7 Dependency Analysis

x:Node :Edge y:Node

v:Node :Edge a:Activity :Edge w:Node

MoveActivity(V,a,v,w,x,y)

:Fragment

:Fragment

V:Process

v:Node :Edge w:Node

x:Node :Edge a:Activity :Edge y:Node

:Fragment

:Fragment

V:Process

Fig. 7.7 Graph transformation rule describing the behavior of the MoveActivity operation

MoveFragment(V,f,v,w,x,y)

x:Node :Edge y:Node

v:Node :Edge f:Fragment :Edge w:Node

:Fragment

:Fragment

V:Process

v:Node :Edge w:Node

x:Node :Edge f:Fragment :Edge y:Node

:Fragment

:Fragment

V:Process

Fig. 7.8 Graph transformation rule describing the behavior of the MoveFragment operation

ConvertFragment(V,f,fc,x,y)

x:Node :Edge f:Fragment :Edge y:Node

:Fragment

x:Node :Edge fc:Fragment :Edge y:Node

:Fragment

V:Process V:Process

Fig. 7.9 Graph transformation rule describing the behavior of the ConvertFragment operation

7.2.4 Transformation Dependencies

Having specified our set of compound change operations as typed attributed graph
transformations, we now define transformation dependent compound change oper-
ations and show how dependencies between compound change operations can be
computed in this section.

Informally if two changes are dependent, then the second one requires the ap-
plication of the first one. This is usually the case if the first change creates model
structures that are required by the second change. Formally, we define:

Definition 10 (Transformation Dependent Compound Change Operations).
[Küster et al., 2010] Let two compound change operations op1 and op2 with speci-

fied position parameters be given such that V
op1
=⇒ V ′ and V ′

op2
=⇒ V ′′. Then we call

op2 transformation dependent (TR-dependent) on op1 if op2 is not applicable on V
and op2 is applicable on V ′.

7.2 Transformation Dependent Compound Change Operations 115

For the computation of dependencies between compound change operations,
we leverage the notion of dependencies between graph transformations that has
been defined in [Corradini et al., 1997, Hausmann et al., 2002, Mens et al., 2007].
Dependencies between graph transformations are based on the concept of weakly
sequential independence that states when two graph transformation rules can be
applied independently of each other and their application order does not matter.

Formally, given a sequence of graph transformations G
p1(o1)
=⇒ H1

p2(o2)
=⇒ X, H1

p2(o2)
=⇒ X

is weakly sequential independent of G
p1(o1)
=⇒ H1 if the occurrence o2(L2) is already

present before the application of p1. This is the case if o2(L2) does not overlap with
objects created by p1. If in addition p2 does not delete objects that are needed for
the application of p1, then p1 and p2 can be exchanged and are called sequentially
independent.

Based on the sequential independence, we can derive whether two particular
transformation rules are sequentially dependent. Given two rules p1 and p2, the
computation of dependencies can be done using critical pairs. A critical pair is a

pair of transformation steps H1
p1(o1)⇐= G

p2(o2)
=⇒ H2 which are in conflict and with

the property that G is minimal. Two transformation steps are in conflict if one can
only be applied after/before the other or one step disables the other one. In or-
der to compute the sequential dependencies between compound change operation
types, given two rules p1 and p2, we compute critical pairs of p1 and p−1

2 and p−1
1

and p2 [Hausmann et al., 2002]. In other words, for all possible pairs of compound
change operation types formulated as model transformations, we overlap the right
hand side of the first operation with the left hand side of the second operation and
vice versa.

The critical pairs obtained by overlapping compound change operation types are
then encoded by specifying conditions on the parameters of the operations and cap-
tured in a dependency matrix1. An excerpt of the dependency matrix specifying sit-
uations in which compound change operation types are dependent on the operation
InsertActivity operation type is shown in Figure 7.10.

A dependency between two change operation types occurs for instance be-
tween InsertActivity(V, a, x, y) and InsertActivity(V, b, v,w) if v = a & w = y or
v = x & w = a, where & means AND and | means OR. In other words, Insert-
Activity(V, b, v,w) depends on operation InsertActivity(V, a, x, y) if either the newly
inserted activity a is the predecessor or the successor of the activity b, which is in-
serted by the operation InsertActivity(V, b, v,w). The complete dependency matrix
is given in the Appendix B.1.

Based on the dependency matrix for compound change operation types, we can
easily identify dependencies between concrete compound change operations in a
reconstructed change log, whose position parameters have been specified. With re-
spect to the dependencies between concrete change operations, a possible execution
order of the compound change operations can be identified that transforms a process
model V into Vi.

1 We used the AGG tool [Taentzer, 2003] to partially compute the entries of the matrices.

116 7 Dependency Analysis

Transformation
Dependencies

InsertActivity
(V,b,v,w)

DeleteActivity
(V,b,v,w)

MoveActivity
(V,b,ov,ow,nv,nw)

InsertActivity
(V,a,x,y)

[IA(a), IA(b)]:

(v = a & w = y) |

(v = x & w = a)

[IA(a), DA(b)]:

(b = x & w = a) |

(v = a & b = y)

[IA(a), MA(b)]:

(nv = x & nw = a) |

(nv = a & nw =y) |

(ov = a & b = y) |

(b = x & ow = a)

Transformation
Dependencies

InsertFragment
(V,f2,v,w)

DeleteFragment
(V,f2,v,w)

MoveFragment
(V,f2,ov,ow,nv,nw)

ConvertFragment
(V,f2,f2c,v,w)

InsertActivity
(V,a,x,y)

[IA(a), IF(f2)]:

(v = a & w = y) |

(v = x & w = a)

[IA(a), DF(f2)]:

(v = a & entry(f2) = y) |

(exit(f2) = x & w = a)

[IA(a), MF(f2)]:

(nv = x & nw = a) |

(nv = a & nw =y) |

(ov = a & entry(f2) = y) |

(exit(f2) = x & ow = a)

[IA(a), CF(f2)]:

(v = a & entry(f2) = w) |

(exit(f2) = x & w = a)

Fig. 7.10 Excerpt of the Transformation Dependency Matrix for Compound Change Opera-
tions

For the compound change operations from our example introduced in Figure 1.3
in Chapter 1, we obtained nine dependencies between in total thirteen operations.
The reconstructed change log Δ(V,V2) with dependencies and one possible execu-
tion order2 of the change operations is shown in Figure 7.11. Dependent operations
are marked by squared brackets [→ OperationNumber] meaning that the execution
of this operation depends on→ the operation OperationNumber.

7.2.5 Discussion

In the following, we evaluate whether the notion of transformation dependent com-
pound change operations is suitable for process model change management accord-
ing to the requirements introduced in Section 7.1. Before that, let us first recap the
approach briefly.

We started by formalizing our set of compound change operations in terms of
model transformations. Based on the existing notion of dependent model transfor-
mations, we defined transformation dependencies between our change operation
types and encapsulated scenarios that result in dependencies between change op-
erations into a dependency matrix. Using this matrix, it can be checked whether any
two change operations with specified position parameters depend on each other.
Using the reconstructed change log that we obtained as an result in the previ-
ous chapter, we computed dependencies between the contained compound change
operations.

Apparently, the presented approach is capable to identify dependencies between
fully specified compound change operations (i.e. operations whose position pa-
rameters have been specified). The application of compound change operations
that are not dependent, results in a connected process model. For instance, after
the application of Operation 11 (see Figure 7.11), the activity “Set Credit Limit

2 Please note that this is just one execution order among several other possible execution
orders.

7.2 Transformation Dependent Compound Change Operations 117

Δ(V,V2)
Root Fragment fRoot

1. InsCyclFrag(V , fLoop, “Record Cust. Data”, “Compute Cust. Scoring”)
fLoop−A

2. InsAct(V , “Check Customer Data”, XOR − JoinO2
f Loop, XOR − S plitI1

f Loop) [→ 1.]
fLoop−B

3. InsAct(V , “Retrieve add. Data”, XOR − S plitO2
f Loop, XOR − JoinI2

f Loop) [→ 1.]
Alternative Fragment fAlt

fAlt−A

5. InsConFrag(V , fPar, “Prep. Bank Card”, “Prep. Credit Card”)
fPar−A

6. InsAct(V , “Print Credit Card”, AND − S plitO1
f Par, AND − Join : 1I1

f Par) [→ 5.]
fPar−B

7. InsAct(V , “Select Credit Card Corp.”, AND − S plitO2
f Par, AND − Join : 2I2

f Par)
[→ 5.]

fPar−C

8. InsAct(V , “Ask for Credit Limit”, AND−S plitO3s
f Par, AND−Join : 2I1

f Par) [→ 5.]
fPar−D

9. InsAct(V , “Calc. Interest Rate”, AND − Join : 2O1
f Par, AND − Join : 1I2

f Par)
[→ 5.]

fAlt−B

10. DelAct(V , “Set Daily Withd. Limit”, “Prep. Prepaid Bank Card”, XOR− JoinI2
f Alt)

11. InsAct(V , “Set Credit Limit to 0”, “Prep. Prepaid Bank Card”, XOR − JoinI2
f Alt)

[→ 10.]
12. InsAct(V , “Remove Credit Card”, “Set Credit Limit to 0”, XOR−JoinI2

f Alt) [→ 11.]
13. InsAct(V , “Set Interest Rate to 0”, “Remove Credit Card”, XOR − JoinI2

f Alt)
[→ 12.]

4. InsAct(V , “Open Account”, XOR − JoinO1
f Alt, End)

Fig. 7.11 Reconstructed Change Log Δ(V,V2) of our running Example with Dependencies
between Compound Change Operations and an Execution Order

to 0” is connected to its predecessor “Prep. Prepaid Bank Card” and successor
“XOR − JoinI2

f Alt”.
However, according to Requirement 2 the approach is too restrictive and results in

dependencies between change operations that potentially can be applied in isolation.
To give an example, let us consider a scenario where the consolidated process model
shall be created by applying just a subset of the compound change operations in
change log Δ(V,V2) given in Figure 7.11. Let us assume that a user wants to select
Operation 12 InsertActivity(V , “Remove Credit Card”, “Set Credit Limit to 0”,
XOR−JoinI2

f Alt) that shall be applied to obtain the consolidated process model VM . In
this case, also Operation 11 InsertActivity(V , “Set Credit Limit to 0”, “Prep. Prepaid

118 7 Dependency Analysis

Bank Card”, XOR − JoinI2
f Alt) must be applied, since Operation 12 depends on this

operation. Actually, it is not possible to apply Operation 12 without Operation 11.
Similarly, the third requirement is not fulfilled, since dependencies that are com-

puted for change operations with specified position parameters, restrict the applica-
tion order of change operations unnecessarily. For clarification, let us again consider
the example from above. Even if both Operations 11 and 12 shall be applied, it is
not possible to apply Operation 12 before Operation 11, because Operation 12 uses
the inserted activity “Set Credit Limit to 0” of Operation 11 as position parameter.

Table 7.1 summarizes which requirements are fulfilled by the presented approach
to compute transformation dependent compound change operations.

Table 7.1 Evaluation of the Dependency Analysis based on Model Transformations according
to the Requirements for Dependencies (Section 7.1)

Requirements for Dependency Analysis Approach based on Model
Transformations

[R1] Dependency Detection ✔

[R2] Application of a Subset of Change Operations ✘

[R3] Arbitrary Execution Order ✘

In the next section, we present an improved approach for the computation of
dependencies that can be applied on compound change operations without the need
to specify their position parameters in advance.

7.3 J-PST Dependent Compound Change Operations

In the previous section, we introduced an approach to compute dependencies be-
tween compound change operations based on dependent model transformations. As
a prerequisite, the approach requires that position parameters of change operations
have been specified before. According to the requirements for dependency com-
putation, this approach turned out to be too restrictive and resulted in unnecessary
dependencies between compound change operations.

In this section, we propose an approach to overcome these issues by comput-
ing dependencies between compound change operations, whose position parameters
have not been specified yet. Our approach relies on the concept of dynamic spec-
ification of compound change operations, where concrete position parameters are
computed dynamically when change operations are applied. Using our approach,
different business process models can be integrated by applying change operations
without being unnecessarily restricted to a certain order. This section and its subsec-
tions are based on our earlier publications [Küster et al., 2009, Küster et al., 2010].

In Section 7.3.1, we first introduce the concept of dynamic specification and
present an algorithm that computes position parameters dynamically. We define the
notion of Joint−PS T dependencies in Section 7.3.2 and show that each Joint−PS T

7.3 J-PST Dependent Compound Change Operations 119

dependency implies a transformation dependency. Finally, we evaluate this approach
whether it fulfills our requirements.

7.3.1 Dynamic Specification

In the following, we first give an overview on the concept of dynamic specification
of compound change operations. Then, we define how position parameters of com-
pound change operations are specified correctly and provide an algorithm for their
computation.

After the detection of differences, the compound change operations in a recon-
structed change log Δ(V,Vi) are underspecified, i.e. their position parameters have
not been specified yet. In contrast to the former approach presented in the previ-
ous section, these partially specified compound change operations will serve in the
following as our starting point for the computation of differences. To that extent,
we will leverage the Joint − PS T and the hierarchical change log that has been
annotated with change operations as introduced in Section 6.3. Figure 7.12 shows
the hierarchical change log Δ(V,V2) from our example. Based on the hierarchical
change log, dependencies between compound change operations are computed. We
define the notion of Joint − PS T dependencies in Section 7.3.2.

froot

fAltfLoop

InsertCyclicFragment
(V, fLoop, ,)

InsertActivity
(V, “Open Account”, ,)

InsertActivity
(V, “Set Credit Limit to 0”, ,)

fAlt-A fAlt-BfLoop-A fLoop-B

InsertActivity
(V “Retrieve add Data”)

InsertActivity
(V, “Check Customer Data”, ,)

InsertActivity
(V, “Remove Credit Card”, ,)

InsertActivity
(V, Set Interest Rate to 0”, ,)

fPar

fPar-A fPar-B fPar-C fPar-D

InsertConcurrentFragment
(V, fPar, ,)

(V, Retrieve add. Data , ,)

I tA ti it

DeleteActivity
(V, “Set Daily Withdrawal Limit”, ,)

InsertActivity
(V, “Print Credit Card Contract”, ,)

InsertActivity
(V, “Select Credit Card Corp.”, ,)

InsertActivity
(V, “Calculate Interest Rate”, ,)

InsertActivity
(V, “Ask for Credit Limit”, ,)

Fig. 7.12 Hierarchical Change Log that represents the Differences between the Process Mod-
els V and V2 (see Figure 1.3)

The idea behind dynamic specification is to compute position parameters only
for those change operations that do not depend on other operations (i.e. indepen-
dent operations). In addition, for the computation of position parameters only cor-
responding and unchanged model elements are used, i.e. model elements that exist

120 7 Dependency Analysis

in both process models and are not affected by a change operation. We refer to these
model elements as fixpoints in the following. By specifying the position parameters
of independent operations, they become applicable. Whenever such an operation is
applied, the position parameters of the remaining operations in the change log are
reconsidered in two ways: First the position parameters of independent change op-
erations are refined in order to reflect the potentially changed set of fixpoints due
to the applied change operation. Second if other operations depend on the recently
applied operation, these operations may become independent now and their position
parameters need to be computed.

By dynamically specified position parameters of change operations, we aim to
avoid unnecessary sequential dependencies and ensure that change operations can
be applied in an arbitrary order whenever possible.

In the following, we first introduce fixpoints in detail and define how posi-
tion parameter must be computed to result in correct specifications of compound
change operations. Then, we present an algorithm for the computation of position
parameters.

Fixpoints and Correct Specification

According to our requirements, differences between two process model versions
should be resolvable in an arbitrary way, which depends on the position parameters.
To give an example, we consider the insertion of the three activities “Set Credit
Limit to 0”, “Remove Credit Card”, and “Set Interest Rate to 0” that have been
inserted in process model version V2 in our running example (see Figure 1.3). For
these operations the position parameters can be specified in the order in which the
operations have been added to the change log Δ(V,V2), resulting in the following
change operations with specified position parameters:

(A) InsAct(V , “Set Credit Limit to 0”, “Prep. Prepaid Bank Card”, XOR − JoinI2
f Alt)

(B) InsAct(V , “Remove Credit Card”, “Set Credit Limit to 0”, XOR − JoinI2
f Alt)

(C) InsAct(V , “Set Interest Rate to 0”, “Remove Credit Card”, XOR − JoinI2
f Alt)

As we have seen in the previous section, these operations are transformation depen-
dent since they use newly created model elements as position parameters. Accord-
ingly, the application of the operation is restricted to one particular execution order
A, B, and C. Moreover, it is not possible to apply a subset of the operations, e.g.
only operation B.

To overcome these issues, we propose to express position parameters in terms
of fixpoints between two process models. Informally, a fixpoint is a node that has a
corresponding counterpart in the other process model and is not affected by a change
operation. Formally, we define:

Definition 11 (Fixpoint). Given two process models V,Vi, a mappingM(V,Vi) be-
tween them, and a change log Δ(V,Vi) representing the differences between V and
Vi in terms of compound change operations. We define a pair of nodes (n, ni) to be
a fixpoint pair if (n, ni) ∈ M(V,Vi) and ni is not affected by a change operation
op ∈ Δ(V,Vi). To each of the nodes n, ni we refer as fixpoint.

7.3 J-PST Dependent Compound Change Operations 121

Based on the fixpoints, we can define correct specifications of compound change
operations that use fixpoints as position parameters:

Definition 12 (Correct Specification). [Küster et al., 2010] Given an independent
compound change operation op with specified position parameters that modifies a
model element e, a specification of op is said to be correct if the position parameters
(x, y) of op

• are chosen inside the parent fragment of e, and
• x is the closest proceeding fixpoint of e, and
• y is the closest succeeding fixpoint of e.

With regards to the three compound change operations from above, a correct speci-
fication of their position parameters is given in the following:

(A) InsAct(V , “Set Credit Limit to 0”, “Prep. Prepaid Bank Card”, XOR − JoinI2
f Alt)

(B) InsAct(V , “Remove Credit Card”, “Prep. Prepaid Bank Card”, XOR − JoinI2
f Alt)

(C) InsAct(V , “Set Interest Rate to 0”, “Prep. Prepaid Bank Card”, XOR − JoinI2
f Alt)

Obviously, the three InsertActivity operations are no longer transformation depen-
dent, since their position parameters consist of model elements that already exist in
both process models and are not affected by a change operation. Each operation can
be applied on its own. If one of the operations is applied the position parameters
of the other operations need to be refined. For instance, let us assume we applied
the operation B. Thereby the activity “Remove Credit Card” is inserted between
the nodes “Prep. Prepaid Bank Card” and XOR − JoinI2

f Alt. The set of fixpoints in-
creases by the activity “Remove Credit Card”, which exists now in both process
models V,V2 and is no longer affected by an operation in the change log Δ(V,V2).
After the application of B, the position parameters of the remaining operations A, B
are refined using dynamic specification as follows:

(A) InsAct(V , “Set Credit Limit to 0”, “Prep. Prepaid Bank Card”, “Remove Credit Card”)
(C) InsAct(V , “Set Interest Rate to 0”, “Remove Credit Card”, XOR − JoinI2

f Alt)

In the next subsection, we introduce an algorithm that computes position parameters
that result in correct specifications of compound change operations.

Computation of Position Parameters

In the following, we introduce an algorithm to compute position parameters of com-
pound change operations that results in correct specifications according to Defini-
tion 12.

The algorithm consists of three methods: the main method compute-
PositionParameters() and two helper methods getPredecessor() and
getSuccessor(). As input the algorithm expects a compound change operation op

122 7 Dependency Analysis

and two process model versions V and Vi. The algorithm starts at the element which
is affected by the change operation and then searches backward and forward until
a fixpoint is reached. Depending on the type of the given compound change oper-
ation, the algorithm returns the position parameters of the new position and/or the
former position. The algorithm is used both for the initial computation of position
parameters as well as for their refinement after each application of an operation.

Listing 2. Computation of Position Parameters

Input: Compound Change Operation op, Process Models V,V1

Output: Position Parameters a, b, c, d

computePositionParameters(op,V,V1)

x = op.getModelElement();

// get old position parameters of x in model V
if op is DeleteActivity,MoveActivity,DeleteFragment, ConvertFragment then

c = direct predecessor of x ∈ V ;
d = direct successor of x ∈ V ;

end

// get new position parameters of x in model V1

if op is InsertActivity,MoveActivity, InsertFragment, or MoveFragment then
a = getPredecessor (x,V ,V1);
b = getSuccessor (x,V ,V1);
if a, b � null then

if a is not directly connected to b then
select an edge i between a and b;
a = i.getSource (); b = i.getTarget ();

else
select an edge i in V in the parent fragment of op;
a = i.getSource (); b = i.getTarget ();

end
end

end
return a, b, c, d;

end

In the next section, we define the notion of Joint − PS T dependencies and show
that it is equivalent to transformation dependencies.

7.3.2 J-PST Dependencies

In the following, we introduce the notion of Joint − PS T dependencies that can
be computed between compound change operations whose position parameters
have not been specified yet. In addition, we address cyclic dependencies between
compound change operations and show that a Joint − PS T dependency implies a
transformation dependency.

7.3 J-PST Dependent Compound Change Operations 123

Listing 3. Supplying Methods getPredecessor and getSuccessor for the
Computation of Position Parameters

Input: Node x, Process Models V,V1

Output: Predecessor p, Successor s

getPredecessor(n,V,V1)

determine predecessor p of x in V1;
if p ∈ V ∧ p is not affected by a move operation then

return p;
else

return getPredecessor (p,V ,V1);
end
return null;

end

getSuccessor(x,V,V1)

determine successor s of x in V1;
if s ∈ V ∧ s is not affected by a move operation then

return s;
else

return getSuccessor (s,V ,V1);
end
return null;

end

Joint − PS T dependencies are based on the decomposition of process models
into a fragment hierarchy and the fact that every model element is enclosed by ex-
actly one fragment, namely its parent fragment. Accordingly if a model element is
inserted or moved, it is a prerequisite that its parent fragment exists. Analogously if
a fragment is deleted, all its contained children must be deleted or moved out of the
fragment. These dependencies are irrelevant from the exact position of the model
elements in the process models. Based on these findings, we formally define the
concept of Joint − PS T dependencies.

Definition 13 (J-PST Dependencies). (based on [Küster et al., 2010]) Let two pro-
cess model versions V,Vi and a hierarchical change log Δ(V,Vi) consisting of com-
pound change operation be given that represents the differences between the process
models. For each op ∈ Δ(V,Vi), we denote with depops(op) all operations that are
dependent on op. We define dependencies on the change operations as follows:

• Let a change operation op be given with type(op) = InsertFragment and let
OP f be the set of all operations associated to a child of the newly inserted
fragment f = f ragment(op). Then every opi ∈ OP f is dependent on op and
therefore depops(op) = {opi ∈ OP f }.

124 7 Dependency Analysis

• Let a change operation op be given with type(op) = DeleteFragment and let
OP f be the set of all operations associated to a child of the deleted fragment
f = f ragment(op). Then every opi ∈ OP f is a prerequisite of op and therefore
op ∈ depops(opi).

• Let a change operation op be given with type(op) = ConvertFragment and let
OP f be the set of all operations associated to a child of the converted fragment
f = f ragment(op). Depending on the type of the operation opi ∈ OP f , we
distinguish three different cases:
– If opi inserts or moves model elements into the converted fragment f ,

i.e. type(opi) = InsertActivity, InsertFragment,MoveActivity, or Move-
Fragment, then opi depends on the conversion of f and opi ∈ depops(op).

– If opi deletes from or moves model elements out of the converted fragment
f , i.e. type(opi) = DeleteActivity,DeleteFragment,MoveActivity, or Move-
Fragment, then the conversion of f depends on opi and op ∈ depops(opi).

– If opi moves models elements within the converted fragments f , there
may exist a cyclic dependency between op and opi. Accordingly, op ∈
depops(opi) and opi ∈ depops(op).

We call a compound change operation op independent if depops(op) = ∅.
Joint − PS T dependencies can be easily computed by traversing the hierarchical
change log. For each fragment, dependencies are computed between all operations
associated to the fragment and operations associated to the children of the fragment.

Figure 7.13 shows the hierarchical change log with Joint−PS T dependencies be-
tween compound change operations that represent the differences between process
models V and V2 (see Figure 1.3). Dependent operations are marked by squared
brackets [→ OperationNumber] meaning that the execution of this operation de-
pends on→ the operation OperationNumber. Again, we have numbered the com-
pound change operation to make them conveniently referenceable. However, in con-
trast to the transformation dependencies, the numbers do not imply any execution
order. Generally, all operations whose position parameters are computed can be ap-
plied directly.

In the following subsection, we consider cyclic dependencies between compound
change operations.

Cyclic J oint − PST Dependencies

For an automatic application of compound change operations it is important to know
whether Joint − PS T dependencies between the operations are acyclic. Compound
change operations with acyclic dependencies can be applied in isolation in accor-
dance with their dependencies. However, change operations with cyclic dependen-
cies have to be applied together.

Figure 7.14 provides an example of cyclic dependencies. There, the alternative
fragments fa−V and fa−V1 in the process models V,V1 correspond to each other. V1

was created out of V by adding a new XOR-Split that converts the structure of frag-
ment fa−V1 from a structured fragment to an unstructured fragment. Additionally,

7.3 J-PST Dependent Compound Change Operations 125

Δ(V,V2)
Root Fragment fRoot

1. InsCyclFrag(V , fLoop, “Record Cust. Data”, “Compute Cust. Scoring”)
fLoop−A

2. InsAct(V , “Check Customer Data”, ,) [→ 1.]
fLoop−B

3. InsAct(V , “Retrieve add. Data”, ,) [→ 1.]
Alternative Fragment fAlt

fAlt−A

4. InsConFrag(V , fPar , “Prep. Bank Card”, “Prep. Credit Card”)
fPar−A

5. InsAct(V , “Print Credit Card”, ,) [→ 4.]
fPar−B

6. InsAct(V , “Select Credit Card Corp.”, ,) [→ 4.]
fPar−C

7. InsAct(V , “Ask for Credit Limit”, ,) [→ 4.]
fPar−D

8. InsAct(V , “Calc. Interest Rate”, ,) [→ 4.]
fAlt−B

9. DelAct(V , “Set Daily Withd. Limit”, “Prep. Prepaid Bank Card”, XOR− JoinI2
f Alt)

10. InsAct(V , “Set Credit Limit to 0”, “Prep. Prepaid Bank Card”, XOR − JoinI2
f Alt)

11. InsAct(V , “Remove Credit Card”, “Prep. Prepaid Bank Card”, XOR − JoinI2
f Alt)

12. InsAct(V , “Set Interest Rate to 0”, “Prep. Prepaid Bank Card”, XOR − JoinI2
f Alt)

13. InsAct(V , “Open Account”, XOR − JoinO1
f Alt , End)

Fig. 7.13 Reconstructed Change Log Δ(V,V2) of our running Example with Joint − PS T
Dependencies

the activity “B” was moved to another fragment. After difference detection, differ-
ences between V and V1 are represented by a ConvertFragment and a MoveActivity
operation.

V V1X X

A

B

fa V

fb V

C

fc V

fd V

X X

A

B
fa V1

fb V1

C

fe V1

fd V1

X

fg V1

(V,V’)

Fig. 7.14 Example of Cyclic Dependencies

If the ConvertFragment that transforms the structured fragment fa−V into
an unstructured fragment, is applied without the MoveActivity operation of
the activity “B”, B will be unconnected in the resulting process model, since its

126 7 Dependency Analysis

surrounding fragment (i.e. fc−V) is removed by the ConvertFragment operation.
However, MoveActivity cannot be applied before the ConvertFragment operation,
since it requires that the fragment fe−V1 to which the activity “B” is moved, ex-
ists. Hence, both operations must be applied together to obtain a connected process
model.

In the following, we show that Joint − PS T dependencies between compound
change operations in a change log that does not contain the operation type Convert-
Fragment are acyclic.

Theorem 3 (Acyclic Joint − PS T dependencies). Let two process model ver-
sions V,Vi and a hierarchical change log Δ(V,Vi) be given. If Δ(V,Vi) consists
only of compound change operations of the types InsertActivity, InsertFragment,
DeleteActivity, DeleteFragment, MoveActivity, and MoveFragment, then the Joint−
PS T dependencies between the compound change operations in Δ(V,Vi) are
acyclic.

DeleteFragment DeleteActivity

MoveFragment MoveActivity

InsertFragment InsertActivity

Fig. 7.15 Dependency Graph for Compound
Change Operation Types

Proof Sketch: (Theorem 3) Proof by
contradiction. In the following, we con-
sider a dependency as a directed edge
connecting an operation type (source)
that depends on another operation type
(target). A cycle in the dependencies
can be described by 〈op1, .., opk〉 such
that op j+1 ∈ depops(op j) for j =
1, ..k − 1 and op1 ∈ depops(opk).

According to the Definition 13, we
can derive the following dependency
graph (shown in Figure 7.15) for
the operation types InsertActivity,
InsertFragment, DeleteActivity,
DeleteFragment, MoveActivity, and MoveFragment. We divide the edges of the
dependency graph into two distinct groups by labeling the edges with Insert-
Fragment or DeleteFragment edges if their source or target is one of these
types.

Based on this dependency graph, a cycle between dependencies can only be
closed by edges that connect DeleteFragment and InsertFragment compound
change operations. A cycle cannot consist of DeleteFragment or InsertFragment
edges only because these edges either go downward in the J-PST or upward.

In the former case that means, the application of a DeleteFragment operation
assigned to a fragment f can only depend on a DeleteFragment operation that is
assigned to a child of fragment f , but is always independent of the parent fragment
of f . In the latter case, an InsertFragment operation can only depend on an Insert-
Fragment operation assigned to its parent fragment.

Therefore there must be one opi in the cycle that has an incoming Delete-
Fragment and an outgoing InsertFragment edge those target and source refer to

7.3 J-PST Dependent Compound Change Operations 127

the same operation or vice versa. In both cases this cannot occur because this im-
plies that opi has both types (DeleteFragment and InsertFragment) which is a
contradiction.

An important finding of Theorem 3 is that a check for cyclic dependencies only
has to be applied for dependencies of ConvertFragment operations. This check is
straight-forward and consists of a depth-first search over the dependencies in a hier-
archical change log starting at the dependencies of a ConvertFragment operation.
In the case that a cycle is closed, i.e. a strongly connected component is found, the
operations in this cycle must be applied together.

In the next subsection, we related Joint−PS T dependencies to the existing theory
of transformation dependencies.

Transformation Independence

Finally, we establish in the following theorem a connection between Joint−PS T de-
pendencies and transformation dependencies that we have introduced in Section 7.2.
The theorem shows that it is sufficient to compute Joint − PS T dependencies even
if operations are associated to different fragments in the Joint − PS T :

Theorem 4 (TR-independence). ([Küster et al., 2010]) Let two process model ver-
sions V,Vi and a hierarchical change log Δ(V,Vi) be given. Further, let opi and op j

be two operations in Δ(V,Vi) that are attached to different fragments. If opi and op j

are not Joint − PS T dependent then opi and op j are not transformation dependent
on each other.

Proof Sketch: (Theorem 4) Proof by Contradiction. Assume that two operations
in different fragments exist and that no Joint − PS T dependency exists between
them. Let us now assume that they are transformation dependent on each other
when their position parameters are fixed. We consider the dependency matrix given
in Appendix B, which specifies transformation dependencies of two operations opi

and op j.
The entries of the matrix specify when two operations are transformation depen-

dent. Each entry requires that the two operations have at least one common parame-
ter. This ensures for all combinations where opi and op j are InsertActivity,Delete-
Activity, and MoveActivity3 operations that the operations are associated to the
same fragment node in the Joint − PS T, which is a contradiction.

For all other combinations involving InsertFragment, DeleteFragment, Move-
Fragment, or ConvertFragment, the common position parameter or the fragment
hierarchy (parent-child relationship) ensures that the two operations are associ-
ated to the same fragment node or it is the case that entry(f) or exit(f) occur in
the position parameters where f is the fragment manipulated by InsertFragment,

3 Please note that MoveActivity and MoveFragment operations that move model elements
between fragments, appear twice in the hierarchical change log Δ(V,Vi). Once in the source
fragment and again in the target fragment.

128 7 Dependency Analysis

DeleteFragment, MoveFragment, or ConvertFragment. In these cases, by Defini-
tion 13, a Joint − PS T dependency must exist between the two operations which is
again a contradiction.

The previous theorem shows that it is sufficient to compute Joint − PS T depen-
dencies between operations contained in the same parent fragment. Next, we briefly
evaluate the notion of Joint−PS T dependent compound change operations accord-
ing to our requirements for dependency analysis.

7.3.3 Discussion

In this section, we evaluate whether the presented approach for the computation of
dependencies based on the Joint − PS T and the hierarchical change log fulfills our
requirements introduced in Section 7.1.

Analogously to the former approach, the presented approach is capable to iden-
tify dependencies between compound change operations. However, in contrast to
transformation dependencies, Joint − PS T dependencies can be computed based
on change operations, whose position parameters have not been specified yet. Posi-
tion parameters are computed for independent compound change operations and are
refined dynamically after the application of a change operation.

Thereby, our approach results in fewer dependencies between change operations
(six Joint − PS T dependencies instead of nine transformation dependencies) and
ensures that all operations that potentially can be applied in isolations, are also in-
dependently applicable, regardless their position parameters. To give an example,
let us consider the operations 11, 12, and 13 from Figure 7.13. These operations
are transformation dependent if dependencies are computed based on compound
change operations, whose position parameter have been specified. However, using
our notion of Joint − PS T dependencies and the dynamic specification of position
parameters, the operations can be applied independently in any execution order,
since no operation uses modified model elements as position parameters. Accord-
ingly, Requirement 2 is fulfilled.

Moreover, the third requirement is fulfilled, since the application order of change
operations is not unnecessarily restricted. For instance, in the example from above,
both operations 11 and 12 can be applied in any order. Whenever one of the op-
erations is applied first, the position parameters of the other operations are refined
dynamically to reflect the new situation.

Table 7.2 summarizes which requirements are fulfilled by the presented approach
to compute Joint − PS T dependent compound change operations.

In the next section, we summarize the dependency analysis between compound
change operations and give an outlook on the next chapter.

7.4 Summary and Discussion

In this chapter, we considered the analysis of dependencies between change oper-
ations. For this purpose, we started with a reconstructed change log that describes

7.4 Summary and Discussion 129

Table 7.2 Evaluation of the Dependency Analysis based on Dynamic Specification according
to the Requirements for Dependencies (Section 7.1)

Requirements for Dependency Analysis Approach based on Dy-
namic Specification

[R1] Dependency Detection ✔

[R2] Application of a Subset of Change Operations ✔

[R3] Arbitrary Execution Order ✔

differences between two process model versions in terms of compound change op-
erations. We first established requirements such an approach to dependency analysis
between compound change operations has to fulfill. Then, we introduced two differ-
ent approaches for the computation of dependencies: transformation dependencies
and Joint − PS T dependencies.

The former approach, computes dependencies between compound change oper-
ations, whose position parameter have been specified before. The approach is based
on the existing notion of dependencies between graph transformations of typed at-
tributed graphs. We first formalized compound change operation types in terms of
graph transformations and then applied a critical pair analysis to identify situations
that result in dependencies. Then, we captured the situations that result in dependen-
cies in a dependency matrix. This dependency matrix enables fast checks for depen-
dencies between compound change operations with specified position parameters.
However, considering our requirements, the notion of transformation dependencies
between compound change operations turned out to be too restrictive and resulted
in unnecessary dependencies.

The latter approach, based on the notion of Joint−PS T dependencies, overcomes
the shortcomings of the former approach and is able to identify dependencies even
between compound change operations, whose position parameters have not been
specified yet. As a consequence, Joint− PS T dependencies fulfill our requirements
for dependency analysis in process model change management.

The compound change operations and dependencies that we have computed in
the previous two chapters represent differences between two process model ver-
sions, e.g. a source process model V and a descendant version V1 or V2. In a two-
way merge scenario, the compound change operations contained in the change log
Δ(V,V1) can be applied in the order determined by the dependencies to transform
the source process model V into version V1. Analogously, V is transformed into V2

by applying the compound change operations contained in the change log Δ(V,V2).
These two examples represent classical two-way merge scenarios, where one pro-
cess model is transformed into the other.

In contrast to classical two-way merge scenarios, in a three-way merge scenario,
we are interested in a merged process model version VM, which considers both the
compound changes applied to obtain version V1 as well as the changes applied to
obtain V2. As a consequence, we have to identify change operations in the change

130 7 Dependency Analysis

logs Δ(V,V1) and Δ(V,V2) that are equivalent and change operations that exclude
each other, i.e. are conflicting. These are the topics of the next two chapters.

We consider the identification of changes that result in equivalent process models
in the next chapter and compute conflicts of change operations that exclude each
other in Chapter 9.

8

Equivalence Analysis

In this chapter, we propose an approach for deciding equivalence of business pro-
cess models and individual parts of them based on a normalization of process model
fragments. The presented approach is in particular useful in distributed process mod-
eling scenarios, to answer the question whether independently applied changes re-
sult in semantically equivalent structures in process models or mutually exclude
each other and hence give rise to conflicts. In addition, normalized fragments can
directly be adopted in the merged version of process models to obtain integrated
process model that are easier to understand, since unstructured fragments may be
normalized to structured fragments.

In the next section, we discuss existing approaches to decide equivalence of pro-
cess models and give an overview of our approach. Then, we introduce process
model terms in Section 8.2 and their normalization using a term rewriting system in
Section 8.3. In Section 8.4, we demonstrate how equivalence can be decided based
on normalized process model terms and conclude with a summary and discussion.

8.1 The Notion of Equivalence

When process models are developed in team environments, it might happen that
semantically equivalent concepts are modeled by different developers using different
syntactical model elements of a modeling language. Figure 8.1 gives an example.
There, a source process model V and two version V1 and V2 are shown that describe
the claim handling in an insurance company.

Although the different process model versions (V1 and V2) look similar, a purely
syntax-based comparison of these models results in several conflicts, among them
many false positives. We consider changes applied to process models to be con-
flicting if the application of both change operation mutually excludes each other,
e.g. different model elements are inserted at the same position in a process model.
A conflict between two change operations constitutes a false-positive conflict if
the application of both operations results in syntactically different but semanti-
cally equivalent structures. For instance, the highlighted fragments in Figure 8.1 are
semantically equivalent, i.e. the same set of activities can be applied in the same

132 8 Equivalence Analysis

X XCheck
Claim

Record
Claim

Settle
Claim

Reject
Claim

V
Source
Model Close

Claim

< 3.5

3.5

X XRecord
Claim

Prepare
Bank Card

Reject
Claim

x x

Check
Claim

Retrieve
add. Data

+

+

+

Send
Confirmation Pay Out

Calculate
Loss Amount

Recalculate
Customer

Contribution

X XRecord
Claim

Settle
Claim

Reject
Claim

Check
Claim

+

+

+
Recalculate
Customer

Contribution

Calculate
Loss Amount

Send
Confirmation

+

V1

V2

Editing Operations (V,V2)

Editing Operations (V,V1)

Close
Claim

Close
Claim

Pay Out

Fig. 8.1 Syntactically different Process Models that share semantically equivalent Fragments

order. However, since their syntactical representation is different, a syntax-based
comparison applied to V1 and V2 results in conflicts, which are false-positive.

This problem results from the fact that well-established modeling languages such
as the Business Process Model and Notation (BPMN) [OMG, 2011a] or Activity
Diagrams (UML-AD) [OMG, 2010a] generally allow a user to connect elements
such as activities and gateways in an arbitrary way. This favors the construction of
syntactically very different process models, which might be semantically equivalent
regarding their execution logic and execution order.

To merge process models effectively, the comparison of business process mod-
els must consider the semantics of the models and equivalences between different
versions of process models must be identified to obtain precise conflicts. In the
following, we first consider existing approaches to equivalence analysis of process
models and afterwards, we give an overview of our approach.

8.1.1 Existing Approaches to Equivalence Analysis of Process
Models

In general, there are two different ways to decide equivalence of business process
models: that is syntactic or semantic comparison. According to this distinction, we
introduce existing approaches to equivalence analysis of process models.

In a syntactic comparison of two process models, contained nodes and edges
are compared. If each contained node and edge in one process model has a

8.1 The Notion of Equivalence 133

corresponding counterpart in the other model, the two models are considered to
be syntactically equivalent. Moreover, the models are also considered to be seman-
tically equivalent. If only some of the nodes and edges have a corresponding coun-
terpart, the models are considered to be similar to some degree. Syntactic compar-
ison has the benefit of being hardly time-consuming. However, it is most unlikely
that two process models are completely syntactically equal, especially since process
modeling languages allow to express the same semantics with different syntactic
constructs. As a consequence, it is rather the case that syntactically different process
models are created that may be semantically equivalent.

The following works compare process models syntactically. Ehrig et al.
[Ehrig et al., 2007] compute a combined similarity value consisting of syntactic,
linguistic, and structural similarity of elements in process models. The execution
semantics of process models and the execution order of contained elements, such as
activities, is not considered. In [van Dongen et al., 2008], van Dongen et al. relate
process elements with their directly preceding and succeeding elements which they
call footprints to measure the similarity between EPC processes. In [Li et al., 2008],
Li et al. measure distance and similarity of process models based on change oper-
ations. Bae et al. [Bae et al., 2006] measure the similarity between process models
using a tree representation and compare its block similarity.

To identify semantic equivalences in process models, a semantic comparison of
process models usually relies on a notion of equivalence such as trace equivalence or
bisimulation [v. Glabbeek, 1988]. Trace equivalence compares the execution traces
of processes. In a trace the execution of activities in a process model is logged in
a chronological order. Computing trace equivalence can be complex, in particular
for concurrent structures or cyclic structures in process models and has exponen-
tial complexity in the general case. Even if traces are computed only for parts of a
process model the number of traces that need to be compared can be high. To give
an example, in the small example in Figure 8.1 the four activities in the highlighted
parts of the process models result in 12 different traces. These sets of traces need
to be compared to decide the equivalence of the highlighted parts. Trace equiva-
lence does not consider the moment of choice when the control-flow in a process
model is splited or joined. For that purpose, a stronger notion such as bisimulation
[v. Glabbeek, 1988] is needed.

Equivalence notions have in common that their result is binary. That means, two
process models are either equivalent or not. In the case that two process models
have different traces, they are not trace equivalent. Moreover, from different traces
it is difficult to identify the actual reasons, i.e. the change operations, which are
responsible for the different traces between the two models. Accordingly, traces
need to be analyzed further.

An approach that tries to overcome the problem of a binary equivalence result
can be found in [van der Aalst et al., 2006]. There, the authors compute a quanti-
fied equivalence based on observable behavior given in execution logs of process
models. A further approach that is based on the analysis of execution traces is
[Weidlich et al., 2009, Weidlich et al., 2011]. Weidlich et al. compare process mod-
els based on so called behavior profiles, which reflect different relations between

134 8 Equivalence Analysis

nodes (strict order, exclusiveness and concurrency). Both approaches are performed
on the whole process model and are not applicable on parts of it. Further, the ap-
proaches rely on the existence of execution traces of a process model, which may
be difficult to handle in the case of large models or contained cyclic structures. In
[Wombacher and Li, 2010], Wombacher et al. evaluate different similarity measures
for workflows that are based on n-grams.

Eder et al. [Eder et al., 2005] provide an equivalence definition for workflow
graphs and describe a set of structural modifications to workflow graphs that are
semantic preserving. In contrast to our work, they focus on well-structured models
and do not support unstructured fragments like the highlighted fragment in process
model V1 in Figure 8.1.

In contrast to existing works, our approach to equivalence analysis of process
models enables a semantic comparison of individual parts of processes. In addition,
the result of our equivalence analysis is directly related to the actual change opera-
tions that are responsible for the different traces between process models. We give
an overview of our approach in the next section.

8.1.2 Overview of Our Approach

Business Process
Model V1

?
Business Process

Model V2

Process Model
Term tV1

Process Model
Term tV2

Normal Form
NF(tV1)

Normal Form
NF(tV2)

1. Formalization

2. Normalization

Fig. 8.2 Approach Overview

Based on process models in the
intermediate representation, we
propose a more efficient way to de-
cide equivalence between process
models that overcomes the short-
comings of trace equivalence. Our
approach combines the benefits
from both the syntactic and se-
mantic comparison. Figure 8.2
gives an overview. To decide
equivalence, business processes
(or individual fragments of them)
are transformed into a term repre-
sentation (Section 8.2) by iterating
over the process structure tree.
The resulting process model terms capture semantic information concerning the
execution order and the execution logic (such as AND, OR, XOR) of the business
process models.

In a second step, the process model terms are normalized using a term rewriting
system (Section 8.3). The rules of the term rewriting system reduce syntactically
different but semantically equivalent terms of two process models into their nor-
mal form by preserving their behavior. Based on the normal forms, we can decide
whether the two parts of a process models are semantically equivalent by comparing
their syntactic representation (Section 8.4).

In addition, the normal form can directly be used to adopt changes in a merged
process model. This potentially results in fewer changes that need to be applied

8.2 Process Model Terms 135

to merge two process models and contributes to a better understandability of the
merged model. A detailed example can be found in Section 8.4.

We introduce the term notation for business process models in the next section,
followed by a description of the term rewriting system.

8.2 Process Model Terms

In this section, we develop a process model term notation and show how process
models in the intermediate representation are transformed into terms that can be
compared using the term rewriting system from Section 8.3.

IR Model Element Term
Activity, Event η η
Sequential Fragment σ σ(...)
Parallel Fragment π π(...)
Alternative Fragment α α(...)
Alternative Loop Fragment λ λ(...)
Complex Fragment ι ι(...)

Fig. 8.3 Transformation of Process Models into
Terms

For the following discussions,
we assume a business process
model V to be expressed using
the intermediate representation as
introduced in Chapter 3. A term
representation of process models
needs to capture precise informa-
tion about the contained model el-
ements, their hierarchical structure
in terms of nested fragments, as
well as information about the exe-
cution order of the elements.

Figure 8.3 summarizes the translation of model elements of IR process models
to their corresponding term representation. η represents the name of an Activity or
an Event in an IR process model. Gateways are not added to process model terms,
since they are already represented by their surrounding fragments. Figure 8.4 shows
the grammar for valid terms.

Term � Frag O
Frag � π(Seqs) | α(Seqs) | λ(Seqs) | ι(Seqs) | Seq
Frags � Frag , Frags | Frag
Seq � σ(Frags) | σ(Nodes)
Seqs � Seq , Seqs | Seq
Node � η | Frag | ε
Nodes� Node , Nodes | Node
O � Seq × Seq

Fig. 8.4 Grammar for Process Model Terms

The transformation of a process model into terms is straight-forward by travers-
ing its PST using the infix approach. We define O to be the partial order set over the
carrier set Seq, i.e. the set of sequences. O specifies the execution order of branches
within fragments that is necessary to decide equivalence of unstructured parallel
and alternative fragments1, like the highlighted fragment in process model V1 in

1 A fragment is unstructured if it consist of pairs of gateways whose number of outgoing
edges differs from the number of incoming edges.

136 8 Equivalence Analysis

Figure 8.1. For instance, within the highlighted, parallel fragment in process model
V1 (Figure 8.1), the sequence containing the activity ”‘Send Confirmation”’ is exe-
cuted before the sequence enclosing the activity ”‘Pay Out”’. We do not explicitly
specify the execution order of elements within sequences, since it is given implicitly.
The partial order within a fragment can be obtained easily by traversing all branches
of each fragment using the depth first approach.

Let s ∈ F (V) be a sequence of the process model V and σ ∈ Seq be its corre-
sponding sequence in the process model term tV . We defineOPre(σ) = {(σi, σ) ∈ O}
to be the preset of σ containing tuples σi < σ, i.e., the sequences σi that are ex-
ecuted directly before σ, and O∗Pre(σ) contain all preceding sequences reachable
from σ in its parent fragment. Analogously, we define OPost(σ) = {(σ, σ j) ∈ O} to
be the postset of σ containing tuplesσ < σ j, i.e., the sequencesσ j that are executed
directly after σ, and O∗Post(σ) contain all succeeding sequences reachable from σ in
its parent fragment. We denote the union of both sets asO(σ) = OPre(σ)∪OPost(σ).

The business process model V1 introduced in Figure 8.1 results in the process
model term tV1 and execution order OV1 shown in Figure 8.5. We use indices for
sequences for short. For instance, we use σ7(′Pay Out′) in the process model term
and refer to this particular sequence using σ7 in the partial order. However, the
sequence indices are not part of the original grammar but are only used for the sake
of brevity. An empty fragment is represented by dots enclosed by the fragments term
representation, e.g. the empty sequential fragment σ5(. . .). The variable η ranges
over the activities and events in the process models.

tV1 = root(‘Start’, ‘Record Claim’, ‘Record Customer Data’,
(1(‘Settle Claim’,

(3(‘Recalc. Cust. Contribution’), 4(‘Calculate Loss Amount’),

5(…), 6(‘Send Confirmation’), 7(‘Pay Out’))
),

2(‘Reject Claim’, ‘Close Claim’),
), ‘Stop’)

OV1 = { 5 < 7, 6 < 7}

Fig. 8.5 Process Model Term tV1 of the Process Model V1 in Figure 8.1

Process model terms can be syntactically compared very efficiently. However,
to compare the semantic equivalence of syntactically different models, their corre-
sponding terms have to be transformed into a normal form to be considered equiv-
alent. Otherwise, syntactically different models result in different terms regardless
their semantic meaning. The term rewriting system for this transformation is intro-
duced in the next section.

8.3 Term Rewriting System for Process Model Terms 137

8.3 Term Rewriting System for Process Model Terms

In general, a term rewriting system reduces terms by applying rules to the
terms [Baader and Nipkow, 1998]. In the domain of process modeling reduc-
tion rules are used, e.g. for the purpose of process model verification. In
[Sadiq and Orlowska, 2000], Sadiq et al. check soundness properties of process
models (such as deadlock and lack of synchronization) by iteratively removing
sound structures until the model is completely reduced. In [van Dongen et al., 2005,
Mendling and van der Aalst, 2007, Dijkman, 2008], reduction rules are applied to
EPCs that remove sound functions, events, and connectors in order to reduce the
state space and speed up the verification process. However, in our scenario, sound
structures cannot be removed, since they are essential to decide equivalence.

In this section, we introduce a term rewriting system [Baader and Nipkow, 1998]
for process model terms to enable semantic comparison of business process models.
The system consists of a set of rules, which reduce process model terms to a normal
form. Then, we consider the correct functional behavior of the rewriting system. Fi-
nally, we define equivalence of process models based on the normal form of process
model terms.

8.3.1 Term Rewriting System

Our term rewriting system consists of rules for the reduction of sequences σ,
parallel fragments π, and alternative fragments α contained in process mod-
els. The fragments can be in structured and unstructured form. Overall our
rule system consists of 16 reduction rules. Some of the rules are inspired by
the rules presented in [van Dongen et al., 2005, Mendling and van der Aalst, 2007,
Dijkman, 2008, Eder et al., 2005]. We do not intent the set of reduction rules to be
complete, in the sense that by using the rules, equivalence can be decided for all
fragments of process model. However, fragments whose equivalence cannot be de-
cided using our approach are known in advance. For these cases, trace equivalence
in combination with an analysis of the obtained sets of traces is leveraged. Due to
the fragment hierarchy of the intermediate representation, trace equivalence is addi-
tionally speeded up, since traces only need to be computed for fragments, which are
significantly smaller compared to the whole process model.

In the following, we present the rules of the term rewriting system and give graph-
ical examples for clarification. Further, we briefly consider their correctness.

Rule Par 1. (Elimination of Empty Sequences) Given a parallel fragment π con-
taining at least two sequences. If one of the contained sequences is empty σε it is
removed and the partial execution order is aligned in such a way that all σi < σε
and σε < σ j are replaced by new restrictions σi < σ j.

(par1)
π(σ1, . . . , σε, . . . , σn) O

π(σ1, . . . , σn) ((O \ P) \ S) ∪ N

138 8 Equivalence Analysis

where P = {(σi, σε) ∈ O | σi < σε }
S = {(σε, σ j) ∈ O | σε < σ j}
N = {(σi, σ j) | (σi,) ∈ S ∧ (, σ j) ∈ P}

Rule Par 1 removes one empty sequence of a parallel fragment at a time and is
applied until all empty sequences are eliminated. Figure 8.6 gives an example, where
the empty sequenceσ3 is removed by applying Rule Par 1. The removal of an empty
sequence in a parallel fragment is semantic preserving, since traces are not changed
and empty sequences can be neglected in process models.

Rule Par 2. (Concatenation of Sequences) Given a parallel fragment π containing
two sequences σ1(a, .., n) and σ2(m, .., z) with the execution order σ1 < σ2 and no
other restriction of the form σ1 < σi and σi < σ2. Then σ1(a, .., n) and σ2(m, .., z)
are concatenated into σ�(a, .., n,m, .., z) and the partial execution order is aligned
in such a way that all σi < σ1 andσ2 < σ j are replaced by new restrictionsσi < σ�
and σ� < σ j.

(par2)
π(x, σ1(a, . . . , n), σ2(m, . . . , z), y) O
π(x, σ�(a, . . . , n,m, . . . , z), y) O′

where O′ = O \ ({(σ1, σ2)} ∪ OPre(σ1) ∪ OPost(σ2)) ∪ P ∪ S
P = {(σi, σ�) | (σi, σ1) ∈ OPre(σ1)}
S = {(σ�, σ j) | (σ2, σ j) ∈ OPost(σ2)}

Figure 8.6 gives an example. The unstructured parallel fragment π contains four
sequences σ1 . . . σ4. After the deletion of sequence σ3 (by the application of Rule
Par 1), Rule Par 2 becomes applicable, which concatenates the sequencesσ1 and σ2

into σ�. Rule Par 2 preserves the behavior of the process model since all activities
are obviously executed in the same order.

Rule Par 3. (Resolution of Empty Parallel Fragments) Given a parallel fragment π
that contains one single sequence σ. Then the parallel fragment can be dropped
regardless of any given partial order.

(par3)
π(σ) O
σ O

Figure 8.7 gives an example. Similar to the former rule, after the removal of the
empty sequence σ2 by Rule Par 1, Rule Par 3 becomes applicable that removes
the parallel fragment π and integrates σ1 into the enclosing sequence σ. Also Rule
Par 1 is behavior preserving since the contained sequence is still executed at the
same position.

Rule Seq 1. (Resolution of Nested Sequences) Given a sequence that contains an-
other sequence. Then the inner sequence may be dropped and its components are
inserted into the outer sequence.

8.3 Term Rewriting System for Process Model Terms 139

+ +
A

C

… …

B

+
1

2

3

4

Par 1 + +
A

C

… …

B

+
1

2

4

Par 2 + +
A

C

… …

*

4

B

(1(A), 2(B), 3(), 4(C)),
{ 1 < 2, 1 < 3}

(1(A), 2(B), 4(C)),
{ 1 < 2}

(*(A, B), 4(C)), { }

Fig. 8.6 Example for the Application of Rule Par 1 and Par 2

(seq1)
σ(x, σ(a . . .n), y) O
σ(x, a, . . . , n, y) O

The application of Rule Seq 1 is shown in Figure 8.7. Here, the inner sequence σ1

is removed and its contained elements are integrated into the enclosing sequence
σ. Since Rule Seq 1 changes only the fragment hierarchy of the model and not its
execution order, it is semantic preserving.

Par 1 Par 3+… …

1

2

A

+ +… …

1
A

+ … …A
1

(…, (1(A), 2()), …), { } (…, (1(A)), …), { }
(…, 1(A), …), { }

Seq 1 … …A

(…, A, …), { }

Fig. 8.7 Example for the Application of Rule Par 1, Par 3, and Seq 1

Rule Seq 2. (Extraction of Sequences from parallel Fragments) Given a parallel
fragment π and a set S comprising all sequences σ directly contained in π. We
assume that a non empty sequence σi ∈ S exists that is executed after all other
sequences σ j ∈ S, i.e. ∀σ j ∈ S \ {σi} : ∃(σ j, σi) ∈ O. We denote this set with P.
Then σi is extracted from π and inserted directly after π in the surrounding parent
fragment σ.

Analogously, Rule Seq 2(b) is applicable in cases, where σi is executed before
all other sequences σ j ∈ S, i.e., ∀σ j ∈ S \ {σi} : ∃(σi, σ j) ∈ O. Again, we denote
this set with P.

(seq2a)
σ(x, π(σ1, .., σi, .., σn), y) O
σ(x, π(σ1, .., σn), σi, y) O \ P

140 8 Equivalence Analysis

(seq2b)
σ(x, π(σ1, .., σi, .., σn), y) O
σ(x, σi, π(σ1, .., σn), y) O \ P

Figure 8.8 gives an example. The sequence σ4 is removed by Rule Par 1. Then
Rule Seq 2(b) becomes applicable, since sequence σ1 is executed before all other
sequences in π. The Rules Seq 2(a) and (b) are semantic preserving since the
set of obtainable traces before and after extracting the sequential fragment are
identical.

+
A

… …

B
1

2

3

4

Par 1

((1(A), 2(B), 3(C), 4())),
{ 1 < 2, 1 < 3}

C
+

+ +
A

… …

B
1

2

3

((1(A), 2(B), 3(C))),
{ 1 < 2, 1 < 3}

C
+

+ Seq 2b … …

B

1

2

3

(1(A), (2(B), 3(C))), { }

C

+ +A

Fig. 8.8 Example for the Application of Rule Par 1 and Seq 2(b)

Rule Par 4. (Resolution of Nested Parallel Fragments) Given a sequence σ in a
parallel fragment π1. If σ contains only a structured2 parallel fragment π2 then the
sequence σ and π2 are dropped and the contained sequences of π2 are inserted into
the outer parallel fragment π1.

Rule Alt 1. (Resolution of Nested Alternative Fragments) Analogously, Rule Alt 1
aligns nested alternative fragments.

(par4)
π1(x, σ(π2(z)), y) O
π1(x, z, y) O

where ∀σ ∈ π2 : O(σ) = ∅

(alt1)
α1(x, σ(α2(z)), y) O
α1(x, z, y) O

where ∀σ ∈ α2 : O(σ) = ∅

An example for Rule Par 4 can be found in Figure 8.9. There, a structured parallel
fragment π2 is enclosed by a sequence σ1, which is otherwise empty. Since, σ1 is
in turn located in a parallel fragment, Rule Par 4 can be applied. The application
removes π2 and replaces σ1 with the contained sequences σ2 and σ3 of π2. Nested
parallel and alternative fragments that are structured are resolved by Rule Par 4 and
Rule Alt 1 in a semantic preserving way, since the process model is not changed at
all, but only its representation in the PST.

Rule Alt 2. (Elimination of Doubled Sequences) Given an alternative fragment α
that contains two sequences σ1(z) and σ2(z) that equal each other (e.g. they are
empty). Furthermore, they need to be in the exact same ordering relation, that is if

2 Note that structured (or well-formed) fragments f are indicated by empty partial order set,
i.e., O(f) = ∅.

8.3 Term Rewriting System for Process Model Terms 141

+

C

… …

+

11

2

3

4

Par 4

A

C

… …B

21

3

4

+ B

+
A

2

+ +

1(1(2(2(A), 3(B))), 4(C)), {…} 1(2(A), 3(B), 4(C)), {…}

Fig. 8.9 Example for the Application of Rule Par 4

σ1 is executed before some σs and after some σp, then σ2 is executed before σs and
after σp, too. Then one of them may be dropped.

(alt2)
α(x, σ1(z), σ2(z), y) O
α(x, σ1(z), y) O \ O(σ2) where O(σ1) = O(σ2)

Rule Alt 3. (Elimination of Empty Sequences in Alternative Fragments) Let an al-
ternative fragment α containing an empty sequencesσε be given. If either the preset
OPre(σε) or the postset POPost(σε) of σε are not empty. Then, σε can be removed
and the partial order relation O is aligned as follows:

(alt3)
α(x, σε, y) O
α(x, y) O′

where O′ = O \ OPre(σε), if OPost(σε) = ∅
O′ = O \ OPost(σε), if OPre(σε) = ∅
O′ = (O \ O(σε)) ∪ S, otherwise
S = {(σi, σ j) | (σi, σε) ∈ OPre(σε)
∧(σε, σ j) ∈ OPost(σε)}

Figure 8.10 shows two examples for the application of Rule Alt 3. In both cases,
sequence σ4 is removed.

Alt 3

A

… …

1

x x2
B

3
C

x 4

A

… …

1

x x
2

B

3
C

A

… …x
2

B

3
C

4 x
xAlt 3

1

(1(A), 2(B), 3(C), 4()),
{ 2 < 4, 3 < 4}

(1(A), 2(B), 3(C), 4()),
{ 4 < 2, 4 < 3}

(1(A), 2(B), 3(C)), { }

Fig. 8.10 Two Examples for the Application of Rule Alt 3

Rule Alt 4. (Extraction of Activities out of Alternative Fragments) Let an alterna-
tive fragment α containing sequences σ1 to σi be given. If all of the sequences start
with the same activity A and their presets are equal (OPre(σ1) = ... = OPre(σi)).
Then, the activity A can be extracted from the sequences σ1 to σi and is inserted in
the preceding sequence σ.

142 8 Equivalence Analysis

(alt4a)
σ(α(σ1(A, ...), ..., σi(A, ...))) O
σ(A, α(σ1(...), ..., σi(...))) O

where OPre(σ1) = OPre(σ2) = ... = OPre(σi)

In the top part of Figure 8.11 an examples for the application of Rule Alt 4 is shown.
There, the Activity A is extracted from the sequencesσ1 to σi that succeed the entry
XOR-Split of the alternative fragment α. Afterwards, A is inserted in the preceding
sequence σ.

In a similar way, variants of this rule extract activities at the end of alternative
fragments (Rule Alt 4b) and from several sequences within an alternative frag-
ment into their preceding sequence (Rule Alt 5a/b) as shown in the bottom of
Figure 8.11.

Alt 4a

A

…

1

i
A

((1(A,…),…, i(A,…),…)),O

…

…

A…

1

i

…

…

Alt 5a

A

…

1

i
A

…

…

A… x
i

…

…

1

…x

((…), 1(A,…), …,

i(A,…),…), O

…x …

…x

(A, (1(…),…, i(…),…)),O

((…,A), 1(…), …,

i(…),…), O

Fig. 8.11 Two Examples for the Extraction of an Activity by Rule Alt 4 and Rule Alt 5

The following commutativity rules reorder sequences within concurrent and al-
ternative fragments.

Rule Com 1. (Reordering of Sequences) Given a parallel fragment π and two con-
tained sequences σ1 and σ2. Further, let σ1 and σ2 have the same set of preced-
ing and succeeding sequences in the partial order relation, i.e., ∀(σi, σ1) ∈ O :
∃(σi, σ2) ∈ O and ∀(σ1, σ j) ∈ O : ∃(σ2, σ j) ∈ O and vice versa. Then, the two
sequences can swap their positions within their parent fragment π.

Analogously, Rule Com 1b reorders sequences contained in alternative frag-
ments.

(com1a)
π(x, σ1(u), σ2(v), y) O
π(x, σ2(v), σ1(u), y) O (com1b)

α(x, σ1(u), σ2(v), y) O
α(x, σ2(v), σ1(u), y) O

8.3 Term Rewriting System for Process Model Terms 143

Rules Par, Alt, and Seq constitute the rule system which is used to transform pro-
cess model terms into a normal form. Rules Com 1a and 1b are applied after the
normalization to align process model terms for a syntactical comparison. In the next
section, we consider the correct functional behavior of the term rewriting system.

8.3.2 Functional Behavior

The term rewriting system can be considered as an algorithm that reduces a given
process model term into its normal form. This algorithm has a correct func-
tional behavior if it terminates (Termination) and results in a unique normal form
(Confluence) for a process model. Functional behavior can be achieved by en-
suring a set of criteria, well-known from the theory of abstract reduction sys-
tems [Baader and Nipkow, 1998, Küster, 2004]. In the following, we examine ter-
mination and confluence for our rewriting system for process model terms.

Termination

Concerning termination, we have to guarantee that no rule is applied infinitely of-
ten. One way to show termination is by giving a so-called monotone measure func-
tion [Baader and Nipkow, 1998]. This function shows that the application of the
rules reduces a certain value, which is limited from below.

In the case of our term rewriting system, a potential candidate for the monotone
reduction function is the number of fragments in a process model term, which is
limited by the number of fragments contained in a process model. Rules Par, Alt,
and Seq 1 reduce a process model term t by exactly one fragment, thus the maximum
number of applicable rules is limited by the number of fragments within a process
model term t. Rules Seq 2(a) and (b) do not reduce the number of fragments. How-
ever, the application of these rules is also limited by the number of fragments, since
each application moves a sequence from a parallel fragment into the surrounding
sequence.

Rules Com 1(a) and (b) are applied after the normalization to reorder sequences
within fragments and can theoretically be applied infinitely often. However, since
these commutativity rules are applied after the normalization of the process model
terms, we can take care that each sequence is reordered only once, e.g. by recording
already reordered sequences.

Confluence

Confluence ensures that in cases where multiple rules are applicable the choice
of the rule does not matter. For terminating rewriting systems confluence fol-
lows from the weaker local confluence3. This requires if there are two direct rules

t1
r1←− t

r2−→ t2, t1 and t2 can be joined again, i.e., they have a common successor. In
such scenarios, where multiple rules are applicable on a term t, it can happen that

3 This result is usually known as Newman’s Lemma [Baader and Nipkow, 1998].

144 8 Equivalence Analysis

the application of rules overlap and the application of one rule turns the other one in-
applicable. All of these so-called critical pairs need to be considered for confluence
by analyzing whether they have a common successor, i.e. they are harmless.

In the case of our term rewriting system for process models, we first overlap each
pair of the left-hand sides of the rules to identify critical pairs. Then, for each critical
pair we show that it is harmless.

Figure 8.12 provides an example for a critical pair. The fragment is transformed
into the initial term on the right-hand side. First, the empty sequence σ2 is removed
by applying Rule Par 1. Then, two rules are applicable, either Rule Par 1 on the
empty sequence σ3 or Rule Par 2 to concatenate the sequences σ1 and σ3. If one
rule is applied the other one is no longer applicable. However, since the resulting
terms are equal (σ1 = σ13∗) the critical pair is harmless. Further harmless critical
pairs can be obtained by overlapping Rule Par 1 and Rule Seq 2.

1

… …

(1(‘A’), 2(), 3(), 4(‘B’)), O

(1(‘A’), 3(), 4(‘B’)), O

(1(‘A’), 4(‘B’)), O (13*(‘A’), 4(‘B’)), O

Rule Par 1 on 2

Rule Par 1 on 3 Rule Par 2 on 1 and 3
+

+
+

B

A

4

2

3

Fig. 8.12 Example for a Critical Pair obtained by overlapping Rule Par 1 and Rule Par 2

In this section, we have examined the correct functional behavior of our term
rewriting system for process model terms using the existing theory for abstract re-
duction systems.

8.3.3 Equivalence of Process Models and Fragments

Based on the normalized process model terms, we first define equivalence of frag-
ments contained in process models as follows:

Definition 14. (Fragment Equivalence) Two fragments f1 and f2 in process models
V1 and V2 are considered to be equivalent if the following properties hold:

1. f1 and f2 are of the same type, i.e. type(f1) = type(f2), such as parallel, alter-
native, etc.,

2. model elements contained in f1 and f2 correspond to each other, and
3. the process model terms t f 1 and t f 2 have the same execution order specified in

their partial order relations (O(f1) = O(f2)).

Based on the equivalence of fragments, we now can define equivalence of entire
process models:

8.4 Detection of Semantically Equivalent Fragments 145

Definition 15. (Process Model Equivalence) Given two process models V1 and V2

and their representation in process model terms tV1 and tV2. V1 and V2 are consid-
ered to be equivalent if each fragment fi in the normalized term tV1 has an equivalent
fragment f2 in the normalized term tV2 and vice versa.

This definition of equivalence relies on a matching of the process models to identify
corresponding model elements. We have introduced matching strategies in Chap-
ter 4. For convenience, corresponding model elements in our example share the
same name and corresponding fragments are determined based on their type (i.e. al-
ternative, parallel, ...) and their contained model elements as well as sub-fragments.

In the next section, we will apply our term rewriting system to our example
introduced in Figure 8.1 to decide equivalence.

8.4 Detection of Semantically Equivalent Fragments

The top of Figure 8.13 shows the highlighted structures of the process model in Fig-
ure 8.1. With a purely syntax-based comparison, the insertion of those fragments
would be considered as being conflicting. Our approach allows the efficient com-
parison of these two model fragments while considering their semantics.

tf1 = ((Recalc), (Calc), (), (Send),
(Pay))

Of1 = { (Send) < (Pay)}

NF(tf1) = ((Recalc), (Calc),
(Send, Pay))

Of1 = {}

NF(tf2) = ((Calc), (Recalc),
(Send, Pay))

Of2 = {}
C

?

1. Transformation into
Process Model Terms

2. Reduction into Normal
Form

… …
……

tf2 = ((((Calc), (Recalc))),
(Send, Pay))

Of2 = {}

rules:
par1, par2

rule:
par4

+

+

+
Send

Confirmation Pay Out

Calculate
Loss Amount

Recalculate
Customer

Contribution

f1

+
+

+
Recalculate
Customer

Contribution

Calculate
Loss Amount

Send
Confirmation

+

Pay Out

f2

Fig. 8.13 Deciding Equivalence of Process Models

Using a simple traversal algorithm, the two models V1 and V2 are transformed
into their corresponding term representation tV1 and tV2. The complexity of this step

146 8 Equivalence Analysis

in our approach is linear to the size of the process model.4 The resulting process
model terms are exact representations of the corresponding process models regard-
ing their syntax. Applying our rule system to both terms results in their correspond-
ing normalizations, i.e. a canonical version of the original term that has not been
changed regarding its semantics. The term normalization is linear to the length of
the term, and thus, linear to the size of the corresponding process model, since every
application of a rule decreases the length of the term.

The last step in our approach is the comparison of two normal forms (see bottom
of Figure 8.13). According to Definition 15, we decide equivalence of the process
model terms based on the equivalence of their contained fragments. The compar-
ison of sequences is straight-forward. The comparison of parallel and alternative
fragments has to be performed under the consideration of the commutativity Rule
COM 1 that may be used to reorder sequential fragments (branches) in alternative
or parallel fragments in order to establish syntactically equal process model terms.
In our example, the sequencesσ(Calc) and σ(Recalc) contained in the parallel frag-
ment π of NF(t f 2) are reordered.

… …+ +
Recalculate
Customer

Contribution

Calculate
Loss Amount

Send
Confirmation Pay Out

fm

Fig. 8.14 Visual Representation of the
Normal Form

In the case of our example, the paral-
lel fragments in Figure 8.13, turned out
to be semantically equivalent, since they
have equivalent normal forms. Figure 8.14
shows the visual representation of the nor-
malized terms of the fragments. The nor-
malized fragments can directly be adopted
in a consolidated version VM of the process
model. This has the benefit that it requires
less changes compared to the highlighted
fragments in Figure 8.13 and is more read-
able. Whether the normal form is always more understandable and can be adopted
with fewer (or at least equal) changes than the non-reduced fragment is part of future
work.

8.5 Summary and Discussion

In this chapter, we presented a formalism to detect equivalent business process mod-
els based on the detection of equivalent fragments contained in the models. First,
we transformed business process models into a process model term. We presented
a term rewriting system consisting of several rules that transform process model
terms into a normal form. We examined the correct functional behavior of the term
rewriting system for process model terms using the existing theory for abstract re-
duction systems. Finally, we compared the normalized terms to identify equivalent
fragments and process models.

The approach combines the benefits from both the syntactic and semantic com-
parison to decide equivalences between process models and contained fragments.

4 Cf. the complexity of an infix tree (PST) traversal and a depth first graph (PM) search.

8.5 Summary and Discussion 147

Thereby, we overcome the shortcomings of approaches based on trace equivalence,
e.g. the computational complexity or the need to analyze different sets of traces to
identify the actual difference between traces. Based on our initial results, we can
conclude that a semantic comparison of business process models in their normal
form allows an efficient and effective equivalence analysis.

We leverage our approach to equivalence analysis of process models in our
method for a precise detection of conflicts between independently applied change
operations on process models, which is considered in the next chapter.

9

Conflict Analysis

This chapter is concerned with the identification of conflicts between independently
applied compound change operations. Informally, two compound change operations
are in conflict if the application of one operation turns the other one inapplicable.
We begin by giving a brief introduction to conflict analysis in Section 9.1 and point
out the challenges that need to be addressed. We then consider different types of
conflicts between compound change operations in Section 9.2. In Section 9.3, we
propose our method for the detection of conflicts that avoids false-positive conflicts
by taking into account semantic equivalences of business process models. At the
end of the chapter, we summarize and discuss our solution for conflict analysis in
Section 9.4. The content of this chapter is partially based on our earlier publications
[Gerth et al., 2010a, Gerth et al., 2011a].

9.1 Conflicts between Change Operations

V

V1 V2

(V,V2)(V,V1)

VM

M(V, V1) M(V, V2)

M(V1, V2)
Fig. 9.1 Scenario Overview

In this section, we provide a scenario of con-
flicting compound change operations in change
management of business process models in dis-
tributed environments and we show why con-
flict detection needs to take semantics into
account.

For the following discussion, we assume that
the source process model V and two descen-
dant versions V1 and V2 as introduced in Chap-
ter 1 are given. Further, we assume that map-
pings M(V,V1),M(V,V, 2), and M(V1,V2) be-
tween the process models have been computed
and differences between them are contained in
two hierarchical change logs Δ(V,V1) and Δ(V,V2). An overview of this scenario is
given in Figure 9.1.

In order to merge the process model versions V1 and V2 into VM , we have to
consider the applied change operations between the source process model V and the

150 9 Conflict Analysis

two versions V1 and V2. VM is then created by applying a subset of the changes that
were applied to achieve V1 and V2.

Whenever changes are applied individually on different versions of a process
model, some changes might be conflicting. An example for a conflicting pair of
change operations is given by the following two operations (A) and (B) that repre-
sent and resolve the differences raised by the newly inserted corresponding activities
“Open Account” in the process models V1 and V2.

(A) InsActΔ(V,V1)(V , “Open Account”, “Check Cust. Data”, “Compute Cust. Scoring”)
(B) InsActΔ(V,V2)(V , “Open Account”, XOR − JoinO1

f Alt , “End”)

Since the corresponding activities “Open Account” are inserted at different posi-
tions in the process models, only one of the operations can be applied in the merged
version VM. Otherwise, the same activity would exist twice in VM and in this case,
the banking account would be opened twice.

Informally, two change operations op1 ∈ Δ(V,V1) and op2 ∈ Δ(V,V2) are con-
flicting if the application of op1 on the consolidated version VM turns operation
op2 inapplicable. Conflicts between change operations have to be detected before a
consolidated version can be created.

Existing, syntax-based approaches to conflict detection (e.g.
[Alanen and Porres, 2003, Pottinger and Bernstein, 2003, Schneider et al., 2004,
Schneider and Zündorf, 2007, Westfechtel, 2010]) compare models and/or
change operations, which modified the models, syntactically to identify con-
flicting pairs of operations. Conflicts can then be captured using, e.g. conflict
sets [Edwards, 1997, Altmanninger, 2007] or conflict matrices [Mens, 2002,
Lippe and van Oosterom, 1992, Kögel et al., 2010, Küster et al., 2009], which
specify conditions under which two change operations are conflicting. For a
comprehensive evaluation of the state of the art in model versioning including
conflict detection, we refer to Section 2.4 in Chapter 2.

Applying a syntax-based conflict detection approach on the compound change
operations of our example (see Figure 1.3) results in several conflicting change op-
erations in the hierarchical change logs Δ(V,V1) and Δ(V,V2). Figure 9.2 shows the
conflicting change operations, which are indicated by arrows. The curled brackets
are added for readability reasons and indicate that every operation within the brack-
ets is in conflict.

Overall, 21 conflicts are detected, among them several conflicts between equiv-
alent change operations. Two operations are equivalent if their applications have
identical effects on the process model. For instance, the operations (l) and (v) insert
the corresponding activities “Set Credit Limit to 0” in process model V1 and V2 at
the same position, despite their different position parameters. Thus, their effects on
the process model are equivalent and shall not give rise to a conflict. We refer to
conflicts between equivalent operations as false-positive conflicts in the remainder.

Approaches to conflict detection based on syntactic features result potentially in
false-positive conflicts because they cannot identify equivalent change operations
in every case. For instance, a syntactic comparison of the aforementioned change
operations (l) and (v) that insert the activities “Set Credit Limit to 0” results in a

9.1 Conflicts between Change Operations 151

(V, V1):
a) InsertActivity(V, “Check Cust. Data”, “Record Cust. Data”, “Compute Cust. Scoring”)

b) InsertActivity(V, “Verify Cust. Identity”, “Check Cust. Data”, “Compute Cust. Scoring”)

c) InsertActivity(V, “Open Account”, “Compute Cust. Scoring”, XOR-SplitI1fA-V1)

d) InsertCon.Fragment(V, fPar-V1, “Prepare Bank Card”, “Prepare Credit Card”)

e) InsertActivity(V, “Sign Contract”, AND-SplitO2
fPar-V1, AND-JoinI2

fPar-V1)

f) InsertActivity(V, “Print Credit Card Contract”, AND-SplitO2
fPar-V1, “Sign Contract”)

g) InsertCon.Fragment(V, fPar2-V1, AND-SplitO1
fPar-V1, AND-JoinI1

fPar-V1)

h) InsertActivity(V, “Calc. Interest Rate”, AND-SplitO1
fPar2-V1, AND-JoinI1

fPar2-V1)

i) InsertActivity(V, “Select Credit Card Corp.”, AND-SplitO2
fPar2-V1, AND-JoinI2

fPar2-V1)

j) InsertActivity(V, “Set Interest Rate to 0”, “Prepare Prep. Bank Card”, XOR-JoinI2
fA-V1)

k) InsertActivity(V, “Remove Credit Card”, “Prepare Prep. Bank Card”, “Set Interest Rate to 0”)

l) InsertActivity(V, “Set Credit Limit to 0”, “Prepare Prep. Bank Card”, “Remove Credit Card”)

(V, V2):
m) InsertCycl.Fragment(V, fLoop, “Record Cust. Data”, “Compute Cust. Scoring”)

n) InsertActivity(V, “Check Cust. Data”, XOR-JoinO1
fLoop, XOR-SplitI1fLoop)

o) InsertActivity(“Retrieve add. Data”, XOR-SplitO2
fLoop, XOR-JoinI2

fLoop)

p) InsertCon.Fragment(V, fPar-V2, “Prepare Bank Card”, “Prepare Credit Card”)

q) InsertActivity(V, “Print Credit Card Contract”, AND-SplitO1
fPar-V2, AND-Join:1I1

fPar-V2)

r) InsertActivity(V, “Select Credit Card Corp”, AND-SplitO2
fPar-V2, AND-Join:2I2

fPar-V2)

s) InsertActivity(V, “Ask for Credit Limit”, AND-SplitO3
fPar-V2, AND-Join:2I1

fPar-V2)

t) InsertActivity(V, “Calc. Interest Rate”, AND-Join:2O1
fPar-V2, AND-Join:1I2

fPar-V2)

u) DeleteActivity(V, “Set Daily Withd. Limit”, “Prepare Prep. Bank Card”, XOR-JoinI2
fA-V2)

v) InsertActivity(V, “Set Credit Limit to 0”, “Prepare Prep. Bank Card”, XOR-JoinI2
fA-V2)

w) InsertActivity(V, “Remove Credit Card”, “Set Credit Limit to 0”, XOR-JoinI2
fA-V2)

x) InsertActivity(V, “Set Interest Rate to 0”, “Remove Credit Card”, “Remove Credit Card”)

y) InsertActivity(V, “Open Account”, XOR-JoinO1
fA-V2, “End”)

21
Conflicts

Fig. 9.2 Change Logs Δ(V,V1) and Δ(V,V2) of our Example in Figure 1.3 with Conflicts

false-positive conflict, since the position parameters of the operations differ and it
seems that the activities are inserted at different positions in V1 and V2.

A further syntax-based approach would be a comparison of the direct neigh-
bors of the activities “Set Credit Limit to 0” in V1 and V2. In the concrete exam-
ple, the false-positive conflict could be prevented since in both process models the
preceding and succeeding activities correspond to each other. However, in general
false-positive conflicts cannot be eliminated based solely on syntactic features. For
instance, consider the case where an additional activity exists in V2 between the
activities “Set Credit Limit to 0” and “Remove Credit Card”.

An approach that addresses the semantics of a modeling language for con-
flict analysis is presented in [Altmanninger, 2007]. The presented Semantically en-
hanced Version Control System(SMoVer) uses semantic views to make semantic as-
pects of modeling languages explicit. Based on these views, semantic conflicts can
be reported. This work can be considered complementary to our work which aims at
making the conflict detection more precise by taking into account the execution se-
mantics of models. The approach eliminates syntactic redundancies between model
elements in modeling languages, but cannot identify equivalences between more
complex structures, such as the unstructured fragments parallel fragments fPar−V1

and fPar−V2 from our example.
The identification of equivalences in cases where model elements are modified

in fragments that are syntactically different but semantically equivalent, is particular

152 9 Conflict Analysis

important for conflict analysis between process models. To give an example, let us
stick to the above mentioned, newly inserted parallel fragments fPar−V1 and fPar−V2

from our example, which are shown in Figure 9.3. A syntactic conflict detection
between change operations that insert these fragments and their contained activities
results in several conflicts between the operations (e-i) and (q-t) as indicated in
Figure 9.2.

+

+

+

Ask for
Credit Limit

Calculate
Interest
Rate

Select
Credit Card
Corporation

Print
Credit Card
Contract

+

+

+
Select

Credit Card
Corporation

Calculate
Interest
Rate

Print
Credit Card
Contract

+

Sign
Contract

fPar-V1 fPar-V2V1 V2

Fig. 9.3 Newly inserted Fragments in our Example in Figure 1.3

For these change operations, it is not straight-forward to decide whether they
result in equivalent fragments. As a consequence, a syntactic comparison of the
change operations and the fragments results in false-positive conflicts. To give an
example, the operations (f) and (q) insert the activities “Print Credit Card Con-
tract” into the structures fPar−V1 and fPar−V2. By considering the syntax of the op-
erations in terms of their position parameters, the operations seem to insert the cor-
responding activities “Print Credit Card Contract” at different positions and hence
result in a conflict. However, considering the behavior of the structures in terms
of the execution traces of contained corresponding activities reveals that most of
the corresponding activities are also executed in corresponding orders in the struc-
tures, e.g. “Select Credit Card Cooperation” and “Print Credit Card Contract”.
Accordingly, these activities result in equivalent execution traces and their change
operations should not give rise to conflicts.

To prevent false-positive conflicts and to obtain a precise set of conflicts, syntax-
based approaches to conflict detection are not sufficient. In addition, the semantics
of process models must be taken into account. For that purpose, we leverage the
proposed formalism to detect equivalent business process models that we have in-
troduced in the previous chapter. In Section 9.3, we introduce a method for conflict
detection that prevents false-positive conflicts by identifying equivalences between
fragments. Before, we define different types of conflicts between compound change
operations.

9.2 Types of Conflicts

In this section, we distinguish and define two notions of conflicts between
change operations. Conflicts between change operations can be classified into

9.2 Types of Conflicts 153

syntactic or semantic conflicts, which are defined in the following two subsections.
Note that the content of this section is partially based on our earlier publications
[Gerth et al., 2011a].

9.2.1 Syntactic Conflicts

Informally, two changes are syntactically in conflict if the application of one change
operation turns the other one inapplicable. For the definition of syntactic conflicts,
we rely on the formalization of compound change operation types in terms of typed
attributed graph transformations, which we have introduced in Section 7.2.2 in
Chapter 7.

Similarly, to the transformation dependency analysis, we employ an existing con-
flict notion for graph transformations. Here, we use the concept of weak parallel
independence for independently applied compound change operations in the two
change logs Δ(V,V1) and Δ(V,V2).

For graph transformations, conflicts have been defined already in several existing
works [Corradini et al., 1997, Hausmann et al., 2002, Mens et al., 2007]. Formally,

let two graph transformations G
p1(o1)
=⇒ H1 and G

p2(o2)
=⇒ H2 be given that transform

the graph G into H1 using a transformation rule p1(o1) and the graph G into H2

using a transformation rule p2(o2). The graph transformation G
p1(o1)
=⇒ H1 is (weakly

parallel) independent of G
p2(o2)
=⇒ H2 if the occurrence o1(L1) of the left-hand side of

p1 is preserved by the application of p2. This is the case if o1(L1) does not overlap
with objects that are deleted by p2.

If the two transformations are mutually independent, they can be applied in any
order yielding the same result. In this case we speak of parallel independence. Oth-
erwise if one of two alternative transformations is not independent of the second, the
second will disable the first. In this case, the two steps are in conflict. According to
the Local Church Rosser Theorem [Corradini et al., 1997]1, parallel independence
of two transformation steps induces their sequential independence and vice versa
(with adapted occurrences).

Formally, we define syntactic conflicts of compound change operations as fol-
lows:

Definition 16 (Syntactically Conflicting Change Operations).
[Gerth et al., 2011a] Let two compound change operations op1 ∈ Δ(V,V1)

and op2 ∈ Δ(V,V2) be given such that V
op1
=⇒ V ′ and V

op2
=⇒ V ′′. We call op1 and

op2 syntactically conflicting if op2 is not applicable on V ′ or op1 is not applicable
on V ′′.

In our example, the change operations a) and m) (Figure 9.2) are syntactically con-
flicting. Both operations insert different elements at the same position in the pro-
cess models and only one of them can be applied. To obtain the merged process

1 The Local Church Rosser Theorem has been proven for typed attributed graph transfor-
mation in [Ehrig et al., 2004].

154 9 Conflict Analysis

model version VM , the syntactic conflict between the operations must be resolved.
Table 9.1 lists possible combinations of compound change operations that result in
syntactic conflicts. An operation in the left-hand column of Table 9.1 is syntacti-
cally in conflict with an operation in the right-hand column and vice versa, since
their applications exclude each other.

Table 9.1 Combinations of Operations that result in Syntactic Conflicts

Syntactic Conflicts
InsertActivity(V, a, x, y) InsertActivity(V, b, x, y)
MoveActivity(V, a, , , x, y) MoveActivity(V, b, , , x, y)
InsertFragment(V, fa, x, y) InsertFragment(V, fb, x, y)
MoveFragment(V, fa, , , x, y)1 MoveFragment(V, fb, , , x, y)1

DeleteFragment(V, f , ,)2 ConvertFragment(V, f , fd, ,)3

ConvertFragment(V, f , fc, ,)3,4

1 conflicting if fa is moved into fb and fb into fa . 3 conflicting if x and y are contained in fragment f but not in fc

2 conflicting if x and y are contained in fragment f 4 conflicting if fc and fd are syntactically different

Syntactic conflicts can be computed using existing theory by overlapping com-
pound change operation types formulated as graph transformation rules. Given two
compound change operations op1 and op2, we compute the critical pairs for all com-
binations of change operations. Critical pairs obtained, are then encoded by speci-
fying conditions on the parameters of op1 and op2. These conditions are partially
shown in the conflict matrix for InsertActivity operations in Figure 9.4.

Syntactic
Conflict
Matrix

InsertActivity
(B,V,W)

MoveActivity
(B,oP,oS,nP,nS)

DeleteActivity
(B,V,W)

InsertActivity
(A,X,Y)

(B A V = X W = Y)
Different element inserted at
same position

(nP = X nS = Y)
A inserted and B
moved to same
position

B = X v
B = Y
Predecessor or
successor of A is
deleted

Syntactic
Conflict
Matrix

InsertFragment
(F2,V,W)

MoveFragment
(F2,oP,oS,nP,nS)

DeleteFragment
(F2,V,W)

ConvertFragment
(F2,F2c,V,W)

InsertActivity
(X,X,Y)

(V = X W = Y)
A and F2 inserted
at same position

(nP = X nS = Y)
A inserted and F2
moved to same
position

F2 = parent(A)
X inserted into
deleted fragment F2

F2 = parent(X) = parent(Y)
(F2 parent(X) parent(Y))
X and/or Y are deleted
during the conversion of
fragment F2

Fig. 9.4 Excerpt of our Syntactic Conflict Matrix for the Comparison of Change Operations

In the next section, we consider semantically conflicting change operations.

9.2 Types of Conflicts 155

9.2.2 Semantic Conflicts

In the case of semantic conflicts, we first have to define when two process mod-
els are considered to be behavioral equivalent. For the following discussion, we
use trace equivalence [v. Glabbeek, 1988] as equivalence relation that has been dis-
cussed for process models, e.g. in [Kiepuszewski, 2002, Rinderle et al., 2004]. We
consider two process models V and Vi to be trace equivalent (V ≡trace Vi) if their
sets of traces are equal. That means, the behavior of V defined by the order of its
executed activities and events can also be obtained by executing Vi and vice versa.

Informally, two change operations are semantically conflicting if they modify
corresponding model elements and after their application the underlying elements
are in different positions in the merged process model resulting in different traces.
We define semantically conflicting operations as follows:

Definition 17 (Semantically Conflicting Change Operations).
[Gerth et al., 2011a] Let two compound change operations op1 ∈ Δ(V,V1)
and op2 ∈ Δ(V,V2) be given that modify the elements (activities, events, or
fragments) x1 and x2. Further, let x1 correspond to x2, i.e. (x1, x2) ∈ M(V1,V2).

Then we call op1 and op2 semantically conflicting if V
op1
=⇒ V ′, V

op2
=⇒ V ′′, and not

V ′ ≡trace V ′′.

An example for a semantic conflict according to Definition 17 is represented by the
operations c) and y) that insert the activities “Open Account” at different positions
in the process models V1 and V2 in Figure 1.3. To integrate the different versions
into the merged process model VM , this semantic conflict must be resolved, e.g. by
selecting a unique position for the activity “Open Account”.

Table 9.2 lists six pairs of compound change operations that result in semantic
conflicts, since after their application corresponding model elements would be at
different positions in the merged process model.

Table 9.2 Pairs of Operations that result in Semantic Conflicts

Semantic Conflicts
InsertActivity(V, a, x, y) - InsertActivity(V, a, v,w)
MoveActivity(V, a, v,w, x, y) - MoveActivity(V, a, v,w, s, t)
MoveActivity(V, a, v,w, x, y) - DeleteActivity(V, a, v,w)
InsertFragment(V, f , x, y) - InsertFragment(V, f , v,w)
MoveFragment(V, f , v,w, x, y) - MoveFragment(V, f , v,w, s, t)
ConvertFragment(V, f , fc, x, y) - ConvertFragment(V, f , fd, x, y)

Semantic conflicts of compound change operations that modify activities
can be identified based on a syntactic comparison of change operations and the
underlying process models. For instance, the semantic conflict between two Insert-
Activity operations that insert corresponding activities at different positions in the
merged process models (InsertActivity(V, a, x, y) - InsertActivity(V, a, v,w)), can be

156 9 Conflict Analysis

identified by comparing the change operations syntax. Analogously to the syntactic
conflicts, we formalize these conditions in a conflict matrix shown in Figure 9.5.
In our method for conflict detection, we will later use the union of both conflict
matrices shown in Figures 9.4 and 9.5.

Sematic Conflict
Matrix

InsertActivity
(V,b,v,w)

MoveActivity
(V,b,ov,ow,nv,nw)

DeleteActivity
(V,b,v,w)

InsertActivity
(V,a,x,y)

(b = a & v x & w y)
Same element inserted at
different positions

MoveActivity
(V,a,ox,oy,nx,ny)

(b = a) &
(nv nx & nw ny)
Same element is moved to
different positions

b = a
Same element is
moved and deleted

Fig. 9.5 Excerpt of our Semantic Conflict Matrix for the Comparison of Change Operations

However, in the case of operations that modify fragments, conflicts cannot be
identified based on a syntactic comparison, since fragments may be syntactically
different but semantically equivalent. A naive solution to identify such semantically
conflicting change operations would be to apply Definition 17 directly. That would
require that all changes need to be applied individually on V (with respect to depen-
dencies between the changes) and their traces need to be computed to verify their
trace equivalence. This approach suffers from several drawbacks: First of all, the
application of the individual operations represents a significant overhead, since it
requires in the worst case the application of all subsets of change operations, which
is not always possible. Second, for the evaluation of trace equivalence all possible
execution traces need to be computed that may result in exponential complexity.

To overcome these shortcomings, we identify semantic equivalences between
process models using the process model terms for equivalence analysis as presented
in the previous chapter. We integrate this approach in our method for precise conflict
detection, which is introduced in the next section.

9.3 Method for Precise Conflict Detection

In this section, we present a method to compute conflicts between given compound
change operations. It avoids false-positive conflicts by taking into account semantic
equivalences between business process models. The method presented in this sec-
tion has also been described in one of our earlier publications [Gerth et al., 2011a].

In the following, we classify change operations into independent and dependent
operations, since the approaches of conflict detection differ for both categories of op-
erations. In Chapter 7, we have shown how dependencies of change operations can
be computed efficiently. For example, a change operation is dependent if it inserts or

9.3 Method for Precise Conflict Detection 157

moves an element into a fragment that was newly inserted itself. Based on this clas-
sification, our approach consists of two main steps (Figures 9.6 and 9.9): In the first
step, we compute conflicts between independent change operations (Section 9.3.1)
and in the second step, we determine conflicts between dependent operations (Sec-
tion 9.3.2).

9.3.1 Conflict Detection of Independent Change Operations

In the first step, we compute conflicts between independent change operations by
comparing the change operations syntactically using the aforementioned conflict
matrix (see Figure 9.4). In addition, we compare the operations in a specific or-
der and use dynamic computation of position parameters to determine the position
parameters of change operations. Thereby, equivalent operations are identified.

Step 1 Conflict Detection of Independent Change Operations

1 Specify position parameters of change operations using fixpoints as
introduced in Chapter 7.

1a Compute syntactic conflicts of operations modifying corresponding
model elements using the syntactic conflict matrix and fixpoints.

If no conflict, increase set of fixpoints and recompute position
parameters.

1b Compute conflicts of operations modifying non correspondingmodel
elements using the syntactic conflict matrix and fixpoints.

Fig. 9.6 Conflict Detection of Independent Operations

First, position parameters for all independent change operations are specified us-
ing fixpoints (Definition 11), i.e. position parameters only consist of corresponding
model elements that are not modified by a change operation in the process models
V1 and V2 (Step 1a). For instance, the activities “Record Customer Data” in the
models V1 and V2 constitute a pair of fixpoint nodes, since they correspond to each
other and are not modified.

In Step 1b, we iterate over the independent change operations whose position
parameters have been specified using fixpoints and syntactically compare pairs of
change operations op1 ∈ Δ(V,V1) and op2 ∈ Δ(V,V2) that modify corresponding
model elements. In the case that only one change operation of such a pair is in-
dependent, a syntactic conflict between the operations is identified, since op1 and
op2 modify corresponding elements differently. Otherwise, we identify syntactic
conflicts between pairs of independent change operations using our conflict ma-
trix. Figure 9.4 shows an excerpt of this conflict matrix for change operations that
specifies condition in which change operations are conflicting. For instance, two

158 9 Conflict Analysis

InsertActivity operations are in conflict if they insert corresponding model elements
at different positions in the merged process model.

In the case, that operations are not in conflict, the underlying corresponding
model elements will be at the same position after the execution of the operations,
resulting in equal traces. The corresponding model elements modified by op1 and
op2 are added to the set of fixpoints. Before the next comparison of change opera-
tions, position parameters of the remaining change operations are recomputed using
dynamic specification to reflect the increased set of fixpoints. In the case that the
operations are in conflict according to the conflict matrix, op1 and op2 are marked
(semantically) conflicting, since their application results in corresponding model
elements at different positions.

Figure 9.7 provides an example using the operations j,k,l and v,w,x from our ex-
ample change logs shown in Figure 9.2. However in contrast to the operations shown
in the change logs in Figure 9.2, here we use the concept of dynamic specification of
position parameter in terms of fixpoints, resulting in the change operations shown
in Figure 9.7 (a). We start the comparison with the operations j and x, which are
not in conflict. Accordingly, their underlying model elements “Set Interest Rate to
0” are added to the set of fixpoints and the position parameters are recomputed, re-
flecting the new fixpoint. Next in (b), the operations k and w are compared, with the
result that “Remove Credit Card” is added to the set of fixpoints entailing again a
re-computation of the position parameter of the remaining operations. Finally in (c),
the remaining operations l and v are compared and the activities “Set Credit Limit
to 0” are added to the set of fixpoints.

(V, V1):
…

j) InsertAct(V, “Set Interest …”, “Prepare Prepaid …”, XOR-JoinI2
fA-V1)

k) InsertAct(V, “Remove …”, “Prepare Prepaid …”, XOR-JoinI2
fA-V1)

l) InsertAct(V, “Set Credit …”, “Prepare Prepaid …”, XOR-JoinI2
fA-V1)

(V, V2):
…

v) InsertAct(V, “Set Credit …”, “Prepare Prepaid …”, XOR-JoinI2
fA-V2)

w) InsertAct(V, “Remove …”, “Prepare Prepaid …”, XOR-JoinI2
fA-V2)

x) InsertAct(V, “Set Interest …”, “Prepare Prepaid …”, XOR-JoinI2
fA-V2)

…

j) InsertAct(V, “Set Interest …”, “Prepare Prepaid …”, XOR-JoinI2
fA-V1)

k) InsertAct(V, “Remove …”, “Set Interest …”, XOR-JoinI2
fA-V1)

l) InsertAct(V, “Set Credit …”, “Set Interest …”, XOR-JoinI2
fA-V1)

…

v) InsertAct(“Set Credit …”, “Set Interest …”, XOR-JoinI2
fA-V2)

w) InsertAct(“Remove …”, “Set Interest …”, XOR-JoinI2
fA-V2)

x) InsertAct(“Set Interest …”, “Prepare Prepaid …”, XOR-JoinI2
fA-V2)

…

j) InsertAct(V, “Set Interest …”, “Prepare Prepaid …”, XOR-JoinI2
fA-V1)

k) InsertAct(V, “Remove …”, “Set Interest …”, XOR-JoinI2
fA-V1)

l) InsertAct(V, “Set Credit …”, “Remove …”, XOR-JoinI2
fA-V1)

…

v) InsertAct(“Set Credit …”, “Remove …”, XOR-JoinI2
fA-V2)

w) InsertAct(“Remove …”, “Set Interest …”, XOR-JoinI2
fA-V2)

x) InsertAct(“Set Interest …”, “Prepare Prepaid …”, XOR-JoinI2
fA-V2)

a)

b)

c)

Fig. 9.7 Conflict Computation between independent Change Operations modifying corre-
sponding Model Elements

Note that by specifying the position parameters of the operations j,k,l and v,w,x
in terms of fixpoints and a dynamic computation of change operation parameters,
no false-positive conflicts are detected between the equivalent operations. As an
outcome of Step 1b, all conflicts between independent change operations modifying
corresponding model elements have been computed.

In the case that a pair of change operations modifying corresponding model ele-
ments exists, where one change operation is independent and the other one is depen-
dent, the two change operations are marked as conflicting. Operation a and n, which

9.3 Method for Precise Conflict Detection 159

both modify the corresponding activities “Check Customer Data”, provide an ex-
ample of this scenario. Operation a is independent but the Operation n depends on
the execution of Operation m in the change log Δ(V,V2). The operations are in con-
flict, since they insert corresponding activities at different positions in the merged
process model.

In Step 1c, we compare the remaining independent change operations that mod-
ify non-corresponding model elements. According to the conflict matrix, a syntac-
tic conflict between these operations is detected if non-corresponding elements are
located at the same position after the application of the operations. An example
for such a conflict is the conflict between the operations a and m in Figure 9.8,
which insert the activity “Check Customer Data” and the fragment fLoop at the same
position.

7 Conflicts
(after Step 1)

(V, V1):
a) InsertActivity(V, “Check Cust. Data”, “Record Cust. Data”, “Compute Cust. Scoring”)

b) InsertActivity(V, “Verify Cust. Identity”, “Record Cust. Data”, “Compute Cust. Scoring”)

c) InsertActivity(V, “Open Account”, “Compute Cust. Scoring”, XOR-SplitI1fA-V1)

d) InsertConcurrentFragment(V, fPar-V1, “Prepare Bank Card”, “Prepare Credit Card”)

e) InsertActivity(V, “Sign Contract”, ,)

f) InsertActivity(V, “Print Credit Card Contract”, ,)

g) InsertConcurrentFragment(V, fPar2-V1, ,)

h) InsertActivity(V, “Calc. Interest Rate”, ,)

i) InsertActivity(V, “Select Credit Card Corp.”, ,)

j) InsertActivity(V, “Set Interest Rate to 0”, “Prepare Prep. Bank Card”, XOR-JoinI2
fA-V1)

k) InsertActivity(V, “Remove Credit Card”, “Prepare Prep. Bank Card”, XOR-JoinI2
fA-V1)

l) InsertActivity(V, “Set Credit Limit to 0”, “Prepare Prep. Bank Card”, XOR-JoinI2
fA-V1)

(V, V2):
m) InsertCyclicFragment(V, fLoop, “Record Cust. Data”, “Compute Cust. Scoring”)

n) InsertActivity(V, “Check Cust. Data”, ,)

o) InsertActivity(V, “Retrieve add. Data”, ,)

p) InsertConcurrentFragment(V, fPar-V2, “Prepare Bank Card”, “Prepare Credit Card”)

q) InsertActivity(V, “Print Credit Card Contract”, ,)

r) InsertActivity(V, “Select Credit Card Corp”, ,)

s) InsertActivity(V, “Ask for Credit Limit”, ,)

t) InsertActivity(V, “Calc. Interest Rate”, ,)

u) DeleteActivity(V, “Set Daily Withd. Limit”, “Prepare Prep. Bank Card”, XOR-JoinI2
fA-V2)

v) InsertActivity(V, “Set Credit Limit to 0”, “Prepare Prep. Bank Card”, XOR-JoinI2
fA-V2)

w) InsertActivity(V, “Remove Credit Card”, “Prepare Prep. Bank Card”, XOR-JoinI2
fA-V2)

x) InsertActivity(V, “Set Interest Rate to 0”, “Prepare Prep. Bank Card”, XOR-JoinI2
fA-V2)

y) InsertActivity(V, “Open Account”, XOR-JoinO1
fA-V2, “End”)

Fig. 9.8 Detected Conflicts after Step 1

Figure 9.8 shows the conflicts between the change operations in Δ(V,V1) and
Δ(V,V2) that have been computed after Step 1. Conflicts of the highlighted oper-
ations have been computed in this step and are indicated by dotted arrows. In the
following, we compute conflicts of the remaining dependent operations (e-i and q-
t) within the fragments fPar−V1 and fPar−V2. Since the application of these change
operations depends on the application of other operations, the conflict detection
approach differs from the one described above.

160 9 Conflict Analysis

9.3.2 Conflict Detection of Dependent Change Operations

For conflict analysis, position parameters of dependent change operations within
modified fragments are difficult to compare because syntactically different frag-
ments may have the same behavior in terms of their execution traces. As a con-
sequence, beside the actual position of an element within a fragment, also the exe-
cution logic of the fragment and the execution order of contained model elements
must be considered. To give an example, in the top of Figure 9.10 the highlighted
fragments of our example (Figure 1.3) are shown. These fragments are syntactically
different. However, considering the behavior of the fragments in terms of the exe-
cution traces of contained activities reveals that most of the corresponding activities
are also executed in corresponding orders in the fragments, e.g. “Select Credit Card
Cooperation” and “Print Credit Card Contract”.

Step 2 Conflict Detection of Dependent Change Operations

2a Compute semantic conflicts of operations modifying corresponding
model elements within fragments using Process Model Terms.

2b Compute conflicts of operations modifying non correspondingmodel
elements using the syntactic conflict matrix and fixpoints.

If position parameters cannot be specified using fixpoints, assign
conflict to the operations.

Fig. 9.9 Conflict Detection of Dependent Operations

Existing, syntax-based approaches to conflict detection (e.g. [Westfechtel, 2010,
Kögel et al., 2010, Taentzer et al., 2010]) would mark the dependent operations
contained in modified fragments as conflicting, since the activities are inserted into
syntactically different fragments. Whether two corresponding activities are also at
the same position with respect to their execution order cannot be decided based on
the syntax of the fragments alone. However, in the case of the fragments fPar−V1 and
fPar−V2, most of the conflicts between the contained change operations constitute
false-positive conflicts.

To avoid these false-positive conflicts, we check whether the corresponding el-
ements within the two fragments lead to equivalent traces. For that purpose, we
iterate in Step 2a (Figure 9.9) over corresponding fragments that are modified by
change operations. For each pair of these fragments, we then leverage the equiva-
lence analysis based on process model terms as introduced in the previous Chapter 8
to identify conflicts of dependent change operations contained in the fragments. Pro-
cess model terms enable us to compare two fragments for semantic equivalence by
detecting differences in the terms. In the following, we first define differences of
process model terms, which we then use to identify conflicting change operations.

9.3 Method for Precise Conflict Detection 161

Definition 18 (Term Difference). [Gerth et al., 2011a] Let two process models
V1,V2 and two corresponding fragments f1 ∈ V1 and f2 ∈ V2 together with a map-
ping M(V1,V2) of V1 and V2 be given. Let further the normalized process model
terms t f 1, t f 2 of the fragments be given that are reduced to their corresponding
model elements (e1, e2) ∈ M(V1,V2). We define a term difference as a difference of
the two terms t f 1, t f 2 or a difference of their partial orders.

Given a term difference, we now define the operations that yield the term difference,
as term-conflicting operations. Figure 9.10 shows the fragments fPar−V1 and fPar−V2

of our example. We first reduce the fragments to their corresponding model ele-
ments (by removing the activities “Sign Contract” and “Ask for Credit Limit”) and
transform them into their process model terms. These terms are normalized using
our term rewriting system introduced in Section 8.3 of Chapter 8. The normal forms
of the terms together with their graphical representation are shown in the bottom
of Figure 9.10. Finally, we compare the normalized terms under consideration of
commutativity in order to identify term differences. Since the terms are not equal, a
term difference is obtained: The sequence s(Calc) in the normal form NF(tPar−V1)
cannot be mapped to a sequence in NF(tPar−V2). The reason for this is that in our
example, the activities “Calculate Interest Rate” and “Select Credit Card Opera-
tion” are executed in parallel in fPar−V1, however they are executed sequentially in
fPar−V2. Thus, the operations h and t that insert the activities “Calculate Interest
Rate” are term-conflicting operations.

The following theorem shows the equivalence of term differences in process
model terms and differences in the execution traces of process models.

Theorem 5 (Equivalence of Term Difference and Trace Difference).
[Gerth et al., 2011a] Let two process models V1,V2 and two corresponding
fragments f1 ∈ V1 and f2 ∈ V2 together with a mappingM(V1,V2) of V1 and V2 be
given. f1 and f2 are reduced to their corresponding elements (e1, e2) ∈ M(V1,V2).
Let further the normalized process model terms t f 1, t f 2 be given. Each difference
between the terms t f 1, t f 2 induces a trace difference in the execution traces of f1
and f2 and equal terms induce equal traces.

Proof Sketch: (Theorem 5) To prove Theorem 5, we have to show that each term
difference induces a trace difference and no term difference induces no trace differ-
ence.

Case 1 (Term Difference→ Trace Difference):

We assume that the terms t f 1, t f 2 contain at least one difference. A difference can
have two reasons. Either the term representations itself differ, or there is a difference
in the partial order of the branches of the fragments. A difference in the former case
occurs if corresponding elements are in different orders what obviously results in
different traces. In the latter case, there is no difference in the term representation,
since all contained sequences can be matched. However, the partial orders of the
terms are different. That means, at least one branch is executed in a different order
resulting in different execution traces.

162 9 Conflict Analysis

tfPar-V1 = [([(Calc), (Select)]), (Print)]

OfPar-V1 = { }

C

?

1. Transformation into
Process Model Terms

2. Reduction into Normal
Form

tfPar-V2 = [(Print), (Select), (), (Calc)]

OfPar-V2 = { (Select) < (Calc), () < (Calc)}

NF(tfPar-V1) = [(Calc), (Select), (Print)]

OfPar-V1 = { }

NF(tfPar-V2) = [(Print), (Select, Calc)]

OfPar-V2 = { }

+

+

+
Select

Credit Card
Corporation

Calculate
Interest
Rate

Print
Credit Card
Contract

+

Sign
Contract

+

+

+

Ask for
Credit Limit

Calculate
Interest
Rate

Select
Credit Card
Corporation

Print
Credit Card
Contract

fPar-V2fPar-V1

+ +
Select

Credit Card
Corporation

Calculate
Interest
Rate

Print
Credit Card
Contract

NF(fPar-V1)

+ +
Calculate
Interest
Rate

Select
Credit Card
Corporation

Print
Credit Card
Contract

NF(fPar-V2)

Fig. 9.10 Term-Conflicting Operations

Case 2 (No Term Difference→ No Trace Difference):

We assume that in the terms t f 1, t f 2 no term difference exists. That means, the cor-
responding elements in the terms itself are in identical orders. In addition, since the
partial orders of the terms are identical, the sequences within the terms are executed
in the same order. Thus, an execution of the fragments results in equal traces.

We have shown that for each pair of term-conflicting change operations that mod-
ify corresponding model elements, a term difference in the process model terms
exists, which induces a trace difference (Theorem 5). Hence, the term-conflicting
operations constitute semantically conflicting change operations according to Defi-
nition 17. This shows that we have found a way to efficiently compute semantically
conflicting operations.

In Step 2a, we have computed conflicts between change operations modifying
corresponding model elements within fragments. What remains, is the computation
of conflicts between dependent operations that modify non-corresponding elements
that were ignored in the previous step. Similar to Step 1c, this can be done, using
corresponding elements, whose change operations are not conflicting as fixpoints.
Therefore, we compute position parameters of dependent change operations within
the fragment in terms of fixpoint with respect to the semantically equivalent parts of

9.3 Method for Precise Conflict Detection 163

the fragments (e.g. operation (e) InsertActivity(“Sign Contract”, “Print Credit...”,
JoinP1−V1)). Then the operations are compared using the conflict matrix to identify
conflicts. In some cases, position parameters of dependent change operations cannot
be specified using fixpoints only. These operations are marked as conflicting and
require user intervention. Figure 9.11 shows the syntactic and semantic conflicts of
our example that were computed using our method.

9 Conflicts
(after Step 2)

(V, V2):
m) InsertCyclicFragment(V, fLoop, “Record Cust. Data”, “Compute Cust. Scoring”)

n) InsertActivity(V, “Check Cust. Data”, ,)

o) InsertActivity(V, “Retrieve add. Data”, ,)

p) InsertConcurrentFragment(V, fPar-V2, “Prepare Bank Card”, “Prepare Credit Card”)

q) InsertActivity(V, “Print Credit Card Contract”, ,)

r) InsertActivity(V, “Select Credit Card Corp”, ,)

s) InsertActivity(V, “Ask for Credit Limit”, ,)

t) InsertActivity(V, “Calc. Interest Rate”, ,)

u) DeleteActivity(V, “Set Daily Withd. Limit”, “Prepare Prep. Bank Card”, XOR-JoinI2
fA-V2)

v) InsertActivity(V, “Set Credit Limit to 0”, “Prepare Prep. Bank Card”, XOR-JoinI2
fA-V2)

w) InsertActivity(V, “Remove Credit Card”, “Prepare Prep. Bank Card”, XOR-JoinI2
fA-V2)

x) InsertActivity(V, “Set Interest Rate to 0”, “Prepare Prep. Bank Card”, XOR-JoinI2
fA-V2)

y) InsertActivity(V, “Open Account”, XOR-JoinO1
fA-V2, “End”)

(V, V1):
a) InsertActivity(V, “Check Cust. Data”, “Record Cust. Data”, “Compute Cust. Scoring”)

b) InsertActivity(V, “Verify Cust. Identity”, “Record Cust. Data”, “Compute Cust. Scoring”)

c) InsertActivity(V, “Open Account”, “Compute Cust. Scoring”, XOR-SplitI1fA-V1)

d) InsertConcurrentFragment(V, fPar-V1, “Prepare Bank Card”, “Prepare Credit Card”)

e) InsertActivity(V, “Sign Contract”, ,)

f) InsertActivity(V, “Print Credit Card Contract”, ,)

g) InsertConcurrentlFragment(V, fPar2-V1, ,)

h) InsertActivity(V, “Calc. Interest Rate”, ,)

i) InsertActivity(V, “Select Credit Card Corp.”, ,)

j) InsertActivity(V, “Set Interest Rate to 0”, “Prepare Prep. Bank Card”, XOR-JoinI2
fA-V1)

k) InsertActivity(V, “Remove Credit Card”, “Prepare Prep. Bank Card”, XOR-JoinI2
fA-V1)

l) InsertActivity(V, “Set Credit Limit to 0”, “Prepare Prep. Bank Card”, XOR-JoinI2
fA-V1)

Fig. 9.11 Detected Conflicts after Step 2

Our work shows that conflict detection can be performed on a semantic level us-
ing a term formalization of process models and their hierarchical structure. Thereby,
we have significantly reduced the overall number of conflicts (from 21 to 9 in the
example) between change operations and in particular the number of false-positive
conflicts.

As already introduced in Chapter 8, based on process model terms equivalent
operations contained in complex fragments cannot be identified. Instead, for those
fragments, we leverage trace equivalence. This still is way faster than a pure trace
equivalence approach, since traces only need to be computed for fragments, which
are significantly smaller compared to the whole process model.

164 9 Conflict Analysis

9.4 Summary and Discussion

In this chapter, we have introduced a method for the precise detection of conflicting
compound change operations in version management of business process models.

First, we have identified shortcomings of existing approaches for conflict detec-
tion that rely on a purely syntactic comparison and potentially result in false-positive
conflicts. Then, we have distinguished conflicts between change operations into the
notion of syntactic and semantic conflicts.

Based on these conflict notions, we have introduced a method for conflict detec-
tion between compound change operations given in two change logs. As an input,
the method expects change operations, whose position parameters have been speci-
fied in terms of fixpoints. By evaluating the change operations in a certain order, the
number of detected conflicts is independent of the actual order in which the change
operations have been applied.

Moreover, our method avoids false-positive conflicts between change operations
modifying syntactically different fragments that are semantically equivalent. To that
extent, we applied our approach to equivalence analysis for process model frag-
ments. In this approach, we compared the process model terms of fragments with
each other in order to identify term differences and showed that a term difference
implies a trace difference.

Our results have shown that taking the semantics of process modeling languages
into account, helps to compute precise conflicts and avoids false-positive conflicts.

Having introduced a detection approach of conflicting compound change oper-
ation, the analysis of the hierarchical change logs is completed and we can merge
different process model versions, which is the topic of the next chapter.

10

Process Model Merging

In this chapter, we consider the merging of different process model versions into
an integrated business process model. For that purpose, we will resolve differences
between the process model versions by applying change operations contained in the
hierarchical change logs, which we have reconstructed in the previous chapters.

We begin by giving an overview of the merging process in Section 10.1. In
Section 10.2, we translate generic compound change operations that we have com-
puted based on abstracted models in the intermediate representation, into language-
specific change operations to make them applicable on process models in a con-
crete modeling language. Based on such language-specific compound change oper-
ations, we then introduce different ways to apply non-conflicting change operations
in Section 10.3. Afterwards, we point out resolution strategies for conflicting change
operations in Section 10.4.

10.1 Merging Overview

In this section, we give a brief overview how different process model versions are
merged by applying compound change operations. Figure 10.1 sketches our ap-
proach. Beginning with a source process model V , two different versions V1 and
V2 have been independently created. These versions shall be merged by applying a
subset of the change operations applied on version V1 and V2 on the source process
model V to obtain VM.

To be independent of a concrete process modeling language, we have abstracted
the different process model versions from their concrete modeling language, e.g.
BPMN, into the intermediate representation (IR) as introduced in Chapter 3. Based
on the process models in the IR, we have then reconstructed IR hierarchical change
logs Δ(V,V1) and Δ(V,V2) in the previous chapters that represent differences between
the process model versions in terms of compound change operations.

To merge the process models, the generic compound change operations contained
in these IR hierarchical change log have to be translated back into language-specific
compound change operations, which can be applied on the source process model V

166 10 Process Model Merging

Framework for Process
Model Change Management

Intermediate
Representation (IR)

Process
Model

V

Process
Model

V1

Process
Model

VM

Process
Model (IR)

V1

IR hierarchical Change Log with
Dependencies and Conflicts

Language specific
hierarchical Change Log with
Dependencies and Conflicts

Process
Model

V2

Process
Model (IR)

V2

Process
Model (IR)

V

Translation of generic IR
Compound Change Operations
into language specific Change
Operations (Section 10.2)Merging of the process models

by applying language specific
Compound Change Operations
(Section 10.3 ff)

Fig. 10.1 Merging of Process Model Versions

specified in its underlying modeling language, e.g. BPMN. The translation of the
generic compound change operations is described in the next section.

Finally, in Sections 10.3 and 10.4 we show how language-specific compound
change operations can be applied by considering dependencies and conflicts be-
tween them.

10.2 Translation of IR Compound Change Operations into
Language-Specific Compound Change Operations

In this section, we translate generic compound change operations that we have com-
puted based on process models in the intermediate representation (IR) to language-
specific change operations. Thereby, we make the change operations applicable on
process models in their concrete modeling language to resolve differences between
different versions of process models. This section is partially based on our earlier
publication [Gerth et al., 2009]. As an example, we consider the translation of IR
change operations into BPMN change operations in the following.

In general, the abstraction of a concrete language such as the BPMN to the IR is
a trade-off between changes that can be detected on the level of the IR and changes
that need further interpretation on the level of the concrete modeling language. For
instance, we mapped both BPMN event types Start and End to the generic IR el-
ement Event. That means, on the level of the IR, we are able to detect differences
(insertions, deletions, or movements) of the IR element Event. However, we have to

10.2 Translation of IR Compound Change Operations 167

identify on the level of the BPMN modeling language whether a BPMN Start event
or End event is affected by this difference.

Compound
ChangeOperation

Compound
FragmentOperation

InsertFragment

DeleteFragment

MoveFragment

Compound
NodeOperation

InsertActivity

DeleteActivity

MoveActivity

ConvertFragment

requires,

enables,

conflicting*

+node:Node

+fragment:Fragment

InsertEvent

DeleteEvent

MoveEvent

Fig. 10.2 Meta-Model of the Difference Model
based on Compound Change Operations as intro-
duced in Chapter 3

Accordingly, for the translation
of generic compound change op-
erations into BPMN change op-
erations, underlying elements of
generic operations need to be eval-
uated. Underlying elements are
given by the node attribute of op-
erations (respectively fragment at-
tribute in the case of compound
fragment operations) and provide
a link to their corresponding con-
crete model element that was es-
tablished during the abstraction
from BPMN to IR. For clarifica-
tion, our difference meta-model is
shown in Figure 10.2

In the case of a compound
node operation opn, the type of
a concrete BPMN change opera-
tion is determined based on the
type of the corresponding BPMN
model element of opn. For in-
stance, a generic InsertActivity op-
eration inserting an activity in an
IR process model is translated into a concrete InsertTask operation that inserts the
corresponding BPMN Task, as shown in Figure 10.3.

IR: InsertActivity(V, “Set Credit Limit to 0” , “Prep. Prepaid Bank Card”, XOR JoinI2fAlt)

BPMN: InsertTask(V, Task “Set Credit Limit to 0” , Task “Prep. Prepaid Bank Card”, Exclusive JoinI2fExcl)

Fig. 10.3 Translation of a generic Compound Change Operation based on the IR into a con-
crete BPMN Change Operation

In the case of a compound fragment operation op f , the type of the underly-
ing fragment determines the type of the concrete BPMN change operation, e.g. a
generic InsertConcurrentFragment operation opPar with an AND-Split as entry,
AND-Join as exit, and no further child-gateways is translated into a BPMN Insert-
ParallelFragment operation that inserts a structured fragment with BPMN Parallel-
Gateways. Please note that a concrete change operation for fragments must take care
that the compound change operation is applied completely. That means, in the case
of the InsertConcurrentFragment operation opPar, the insertions of the fragments

168 10 Process Model Merging

entry node and exit node are also executed by the BPMN InsertParallelFragment
operation.

Finally, position parameters of generic insert and move operations that spec-
ify former and/or new predecessor and successor of modified model elements are
translated by substituting generic Node elements with their corresponding concrete
BPMN element.

By applying language-specific compound change operations, we will merge dif-
ferent versions of a process model in the next sections.

10.3 Applying Non-conflicting Compound Change Operations

As introduced earlier, the merging of different process model versions requires the
resolution of differences between the versions by applying compound change op-
erations that represent and resolve the differences. For the application of change
operations, we divide the set of compound change operations into subsets of con-
flicting and non-conflicting operations. In this section, we consider the application
of non-conflicting change operations.

In general, the application of non-conflicting compound change operations is rel-
evant for both two-way and three-way merging scenarios, as introduced in Chap-
ter 2. In a two-way merging scenario, differences are computed between two ver-
sions of a process model, e.g. versions V and Vi. In this scenario, conflicts between
change operations cannot be obtained, since the change log describes how process
model V can be transformed into process model Vi. As a consequence, in two-way
merge scenarios only non-conflicting change operations are applied. However, in
three-way merge scenarios non-conflicting as well as conflicting change operations
are applied. In the following two subsections, we introduce two methods to apply
non-conflicting change operations.

10.3.1 Iterative Application of Change Operations

As a first method to merge different process model versions, we consider the man-
ual and iterative application of non-conflicting compound change operations that
resolve differences between process models. To that extent, a hierarchical change
log is presented to a user, who then iteratively selects and applies change opera-
tions. For clarification, the hierarchical change log Δ(V,V2) from our example (see
Figure 1.3) is given in Figure 10.4.

Based on such a hierarchical change log, a user can select iteratively a change
operation that shall be applied next until the desired merged process model is ob-
tained. Please note that in case of a three-way merge scenario, two such hierarchical
change logs must be shown two a user: one representing the differences between the
Versions V and V1 and the other representing the differences between Versions V
and V2.

The selection of the compound change operation that shall be applied next has to
consider dependencies between change operations. That means, it must be ensured

10.3 Applying Non-conflicting Compound Change Operations 169

Δ(V,V2)
Root Fragment fRoot

InsCyclFrag(V , fLoop, “Record Cust. Data”, “Compute Cust. Scoring”)
fLoop−A

InsAct(V , “Check Customer Data”, ,) [→ 1.]
fLoop−B

InsAct(V , “Retrieve add. Data”, ,) [→ 1.]
Alternative Fragment fAlt

fAlt−A

InsConFrag(V , fPar , “Prep. Bank Card”, “Prep. Credit Card”)
fPar−A

InsAct(V , “Print Credit Card”, ,) [→ 4.]
fPar−B

InsAct(V , “Select Credit Card Corp.”, ,) [→ 4.]
fPar−C

InsAct(V , “Ask for Credit Limit”, ,) [→ 4.]
fPar−D

InsAct(V , “Calc. Interest Rate”, ,) [→ 4.]
fAlt−B

DelAct(V , “Set Daily Withd. Limit”, “Prep. Prepaid Bank Card”, XOR − JoinI2
f Alt)

InsAct(V , “Set Credit Limit to 0”, “Prep. Prepaid Bank Card”, XOR − JoinI2
f Alt)

InsAct(V , “Remove Credit Card”, “Prep. Prepaid Bank Card”, XOR − JoinI2
f Alt)

InsAct(V , “Set Interest Rate to 0”, “Prep. Prepaid Bank Card”, XOR − JoinI2
f Alt)

InsAct(V , “Open Account”, XOR − JoinO1
f Alt , End)

Fig. 10.4 Hierarchical Change Log Δ(V,V2) of our running Example with Joint − PS T De-
pendencies

that a user does not apply a change operation that is dependent on the application
of another change operation that is not applied yet. Otherwise, a potentially uncon-
nected process model is obtained, as discussed in Chapter 7. This can be achieved
by disabling the application of dependent compound change operations in a hierar-
chical change log until they become applicable. In Figure 10.4, we have visualized
dependent change operations using an italic font style and directly applicable change
operations are highlighted in a bold font style.

Change operations are applied on the source Version V of the process models.
After each application of a change operation, the position parameters of the remain-
ing operations are recomputed based on the concept of dynamic specification as
introduced in Section 7.3.1 in Chapter 7. For instance, let us assume a user first ap-
plies the independent change operation InsCyclFrag(V, fLoop, “Record Cust. Data”,
“Compute Cust. Scoring”) from Figure 10.4 that inserts a cyclic fragment in pro-
cess model V .

After the application, the hierarchical change log Δ(V,V2) is updated by dynamic
computation as shown in Figure 10.5.

170 10 Process Model Merging

Δ(V,V2)
Root Fragment fRoot

Cyclic Fragment fLoop

fLoop−A

InsAct(V , “Check Customer Data”, XOR − JoinO2
f Loop, XOR − S plitI1

f Loop)

fLoop−B

InsAct(V , “Retrieve add. Data”,XOR − S plitO2
f Loop, XOR − JoinI2

f Loop)

Alternative Fragment fAlt

. . .

Fig. 10.5 Excerpt of the hierarchical Change Log Δ(V,V2) of our running Example after the
Insertion of the Cyclic Fragment fLoop

In particular, the two change operations contained in the newly inserted cyclic
fragment become applicable and their position parameter have been specified. Anal-
ogously, further operations are applied until a merged version is obtained. In the
next subsection, we consider the automatic application of non-conflicting compound
change operations.

10.3.2 Automatic Application of Change Operations

Analogously to the conventional procedure of well-known concurrent version-
ing systems for textual documents, such as concurrent versions systems (CVS)
[CVS, 2011] or Subversion (SVN) [Subversion, 2011], all non-conflicting change
operations may also be applied automatically without the need of further user inter-
vention. This requires that a valid resolution order of all non-conflicting compound
change operations contained in a hierarchical change log is computed with respect
to the dependencies between change operations. After the application of these oper-
ations, only conflicting compound change operations remain in the change logs.

The computation of an execution order is straight-forward by iterating over all
compound change operations in a hierarchical change log. If an independent change
operation is identified it is numbered and marked as applied. In the case of a de-
pendent operation, we check if all of its required operations have been marked as
applied. If this is the case, the dependent operation is also numbered and marked as
applied. This procedure is repeated until all non-conflicting operations are applied.

Utilizing this algorithm on the change log Δ(V,V2) of our running example results
in the execution order for the contained compound change operations shown in Fig-
ure 10.6. We indicated the order of the change operations execution by numbering
the change operations in their execution order.

Further variants of an automatic application of non-conflicting change operations
include, e.g. the automatic application of a subset of the change operations contained
in a hierarchical change log in a specific (user-defined) order. For instance, the appli-
cation of all operations from the beginning of a process model to its end by iterating

10.4 Applying Conflicting Compound Change Operations 171

Δ(V,V2)
Root Fragment fRoot

1. InsCyclFrag(V , fLoop, “Record Cust. Data”, “Compute Cust. Scoring”)
fLoop−A

8. InsAct(V , “Check Customer Data”, ,) [→ 1.]
fLoop−B

9. InsAct(V , “Retrieve add. Data”, ,) [→ 1.]
Alternative Fragment fAlt

fAlt−A

2. InsConFrag(V , fPar , “Prep. Bank Card”, “Prep. Credit Card”)
fPar−A

10. InsAct(V , “Print Credit Card”, ,) [→ 2.]
fPar−B

11. InsAct(V , “Select Credit Card Corp.”, ,) [→ 2.]
fPar−C

12. InsAct(V , “Ask for Credit Limit”, ,) [→ 2.]
fPar−D

13. InsAct(V , “Calc. Interest Rate”, ,) [→ 2.]
fAlt−B

3. DelAct(V , “Set Daily Withd. Limit”, “Prep. Prepaid Bank Card”, XOR− JoinI2
f Alt)

4. InsAct(V , “Set Credit Limit to 0”, “Prep. Prepaid Bank Card”, XOR − JoinI2
f Alt)

5. InsAct(V , “Remove Credit Card”, “Prep. Prepaid Bank Card”, XOR − JoinI2
f Alt)

6. InsAct(V , “Set Interest Rate to 0”, “Prep. Prepaid Bank Card”, XOR − JoinI2
f Alt)

7. InsAct(V , “Open Account”, XOR − JoinO1
f Alt , End)

Fig. 10.6 Reconstructed Change Log Δ(V,V2) of our running Example with an Execution
Order for an automated Application

the process structure tree (PST) in an prefix manner or the application of all changes
within a certain subtree of the PST of a process model.

10.4 Applying Conflicting Compound Change Operations

Having introduced different ways to apply non-conflicting compound change opera-
tions, we consider the application of conflicting change operations in this section. In
the following, we present an approach that has been published in one of our earlier
publication [Gerth et al., 2011a].

In contrast to non-conflicting change operations that can be applied automati-
cally, conflicting change operations require user interaction, since their application
mutually excludes each other. To that extent, we first introduce different resolu-
tion strategies for conflicts between change operations. Based on the strategies, we
present a method for conflict resolution. For clarification, we apply the method on
our example and come up with a merged process model VM .

172 10 Process Model Merging

10.4.1 Strategies for Conflict Resolution

In general, a conflict between change operations can be resolved by applying one of
the following strategies:

• (Strategy S 1) Given two conflicting change operations op1 and op2. Trivially,
the conflict is resolved by applying none of the conflicting operations in the
merged process model VM.

• (Strategy S 2) Given two conflicting change operations op1 and op2. The conflict
is resolved by applying one of the change operations, e.g. op1, to obtain the
merged process model VM. The other change operation op2 is discarded.

• (Strategy S 3) Given two syntactically conflicting change operations op1 and op2

that modify non corresponding model elements x and y. To resolve the conflict,
both change operations are applied iteratively in such a way that the model el-
ements x, y (or y, x) directly succeed each other in the merged process model
VM.

Strategies S 1 and S 2 are straight-forward and can be applied to resolve semantic and
syntactic conflicts between change operations. To give an example for Strategy S 2,
we consider the change logs Δ(V,V1) and Δ(V,V2) given in the top of Figure 10.7.
There, the conflict between the operations (c) and (y) that insert the node “Open Ac-
count” at different positions can be resolved by applying only one of the operations
in the merged process model.

In contrast to the first two strategies, Strategy S 3 can only be used for syntacti-
cally conflicting change operations that modify non-corresponding model elements.
Such operations are in conflict if after the application of the conflicting operations
the non-corresponding model elements would be located at the same position in the
merged process model. To resolve the conflict, both operations could be applied in
such a way that the underlying model elements directly succeed each other after the
application. To that extent, a user has to specify, which operation shall be applied
first. The second operation is then adapted, i.e. its position parameters are aligned in
such a way that after the application of the second operation the underlying model
element is located directly after the model element of the operation that was ap-
plied first. In our example, the conflict between the operations (b) and (m) (see top
of Figure 10.7) can be resolved using Strategy S 3. The operations insert different
model elements (“Verify Customer Identity” and the fragment fLoop to complete the
customer’s data) at the same position resulting in a syntactic conflict. To resolve the
conflict, Strategy S 3 can be adopted that applies the operations by applying opera-
tion (m) first and (b) afterwards.

10.4.2 Method for Conflict Resolution

In the following, we present a method for the resolution of conflicts between change
operations in order to merge different versions of process models into an integrated
version VM . The method guides a user through the process of conflict resolution

10.4 Applying Conflicting Compound Change Operations 173

by providing an order in which conflicts should be resolved and suggesting appro-
priate strategies for the resolution of individual conflicts. Based on the suggestion
for an individual conflict, a user selects a strategy to resolve a conflict between two
change operations. This decision is usually based on the user’s domain knowledge
and cannot be automated.

In general, we can distinguish two situations for conflict resolution: The resolu-
tion of a single conflict between two change operations that are not conflicting to
other change operations and the resolution of a conflict between change operations
that are in conflict with other change operations.

In the former situation, a conflict c between two operations op1 and op2 can be
considered independently of any other conflict. If c is a syntactic conflict between
op1 and op2, it can be resolved by applying one of the strategies S 1, S 2, or S 3. If c
is a semantic conflict the resolution is limited to strategies S 1 or S 2. For instance,
in the merged process model VM in Figure 10.7, we resolved the semantic conflict
between the operations (h) and (t) that insert the activity “Calculate Interest Rate”
to different positions, by adopting strategy S 2, i.e. we applied operation (h)1 and
discarded operation (t).

In the latter situation, a conflict c between two change operation op1 and op2

cannot be resolved in isolation, since the resolution of c potentially impacts the
resolution of other conflicts of op1 and op2. As a consequence, in such multi-conflict
situations, the resolution of an individual conflict must consider all conflicts of op1

and op2.
In our method, we propose to resolve semantic conflicts between change oper-

ations first for two reasons: First, the resolution of semantic conflicts is limited to
the adoption of two strategies (S 1 and S 2). Second, change operations that are se-
mantically conflicting modify a merged process model in different parts that are
often completely unrelated to each other and require a careful investigation. For in-
stance, the semantically conflicting operations (c) and (y) insert the activity “Open
Account” to different positions that are far away from each other. Whereas, syntactic
conflicting change operations modifies model elements in a process model that are
located in the same area. Accordingly, syntactic conflicts are resolved in a second
step.

Figure 10.7 gives a concrete example, the operation (a) is in conflict with the op-
erations (m), (n), and (o). In addition operations (m), (n), and (o) are in conflict with
operation (b). An adoption of Strategy S 2 resolves the semantic conflict between the
operations (a) and (n) by applying operation (n) that inserts the activity “Check Cus-
tomer Data” in the fragment and discarding operation (a). Subsequently, the con-
flicts between the (a),(m), an (o) are resolved, too. Finally, we resolve the syntactic
conflict between (b) and (m), whereas an adoption of strategy S 1 is no longer avail-
able, since the operation (m), which inserts the alternative loop, must be applied,
to enable the application of operation (n) that inserts the activity “Check Customer
Data” in the loop.

1 In the merged process model VM in Figure 10.7, operation (h) was applied using the normal
form of its surrounding fragment fP1−V1.

174 10 Process Model Merging

(V, V1):
a) InsAct(“Check Cust. Data”, “Record Cust. Data”, “Compute Cust. Scoring”)
b) InsAct(“Verify Cust. Identity”, “Record Cust. Data”, “Compute Cust. Scoring”)
c) InsAct(“Open Account”, “Compute Cust. Scoring”, “XOR SplitfA V1”)
d) InsCon.Fragment(FPar V1, “Prepare Bank Card”, “Prepare Credit Card”)

e) InsAct(“Sign Contract”, ,)
f) InsAct(“Print Credit Card Contract”, ,)
g) InsCon.Fragment(FPar2 V1, ,)

h) InsAct(“Calc. Interest Rate”, ,)
i) InsAct(“Select Credit Card Corp.”, ,)

j) InsAct(“Set Credit Limit to 0”, “Prepare Prep. Bank Card”, “XOR JoinfA V1”)
k) InsAct(“Remove Credit Card”, “Set Credit Limit to 0”, “XOR JoinfA V1”)
l) InsAct(“Set Interest Rate to 0”, “Remove Credit Card”, “XOR JoinfA V1”)

(V, V2):
m)InsAlt.Fragment(FLoop, “Record Cust. Data”, “Compute Cust. Scoring”)

n) InsAct(“Check Cust. Data”, ,)
o) InsAct(“Retrieve add. Data”, ,)

p) InsParallelFragment(FPar V2, “Prepare Bank Card”, “Prepare Credit Card”)
q) InsAct(“Print Credit Card Contract”, ,)
r) InsAct(“Select Credit Card Corp”, ,)
s) InsAct(“Ask for Credit Limit”, ,)
t) InsAct(“Calc. Interest Rate”, ,)

u) DelAct(“Set Daily Withd. Limit”, “Prepare. Prep. Bank Card”, “XOR JoinfA V2”)
v) InsAct(“Set Interest Rate to 0”, “Prepare Prep. Bank Card”, “XOR JoinfA V2”)
w) InsAct(“Remove Credit Card”, “Prepare Prep. Bank Card”, “XOR JoinfA V2”)
x) InsAct(“Set Credit Limit to 0”, “Prepare Prep. Bank Card”, “XOR JoinfA V2”)
y) InsAct(“Open Account”, “XOR JoinfA V2”, “End”)

X X
Record

Customer
Data

Compute
Customer
Scoring

Prepare
Bank Card

Prepare
Prepaid

Bank Card

Prepare
Credit Card

< 3.5

3.5

+ +
Select

Credit Card
Corporation

Calculate
Interest
Rate

Print
Credit Card
Contract

VM

Set Credit
Limit to 0

Set Interest
Rate to 0

Sign
Contract

Open
Accountx x

Check
Customer
Data

Retrieve
add. Data

Verify
Customer
Identity

Fig. 10.7 A possible merged Process Model VM

Figure 10.7 illustrates one possible resulting process model VM . In order to visu-
alize the conflict resolution process, applied change operations are printed in bold
letters and rejected changes in italic letters.

We start the merging of the process models V1 and V2 into VM by resolving the
conflicts between the change operations (a), (b) and operations (m), (n), and (o) as
described above. Then, the semantic conflict between the operations (c) and (y) that
insert the node “Open Account” to different positions is resolved by adopting strat-
egy S 2 and applying operation (y). The highlighted fragment in the merged process
model VM was added by inserting the normal form of the fragment fPar−V1. Finally,
the non-conflicting operations (u), (j), (l), (v), and (x) are applied in the merged pro-
cess model VM .

This example shows that using our approach conflicts between change opera-
tions can be resolved systematically in an iterative way with minimal manual user
intervention such that a consolidated process model is constructed.

10.5 Summary and Discussion

In this chapter, we considered the merging of different process models by apply-
ing compound change operations. We first showed how generic change operations
based on models in the intermediate representation are translated into language-
specific change operations, which are applicable on process models in a concrete
modeling language. For the application of non-conflicting change operations, we
introduced two methods: one for the iterative application of change operations re-
quiring user intervention and one for the automatic application of compound change
operations, which first computes an execution order. Finally, we proposed three dif-
ferent strategies for the resolution of conflicts between change operations together
with a method that guides a user through conflict resolution when merging process
models.

10.5 Summary and Discussion 175

To show the feasibility of our solution for process model change management
and to present the parts of our solution, which are released in the IBM WebSphere
Business Modeler, we introduce our tool support in the next chapter.

11

Tool Support

In this chapter, we present tool support for process model change management. Most
of the parts of our framework that we have introduced in the previous chapters are
implemented in a prototype and have been instantiated for process models in two
modeling languages, namely BPMN and BPEL.

The remainder of this chapter is structured as follows: In the next section, we
introduce two commercial software products, which serve as our implementation
platform. In Section 11.2, we give an overview on our prototypic implementation
of our framework for process model change management. In addition, we briefly
present the Compare & Merge Framework that is contained in a commercial soft-
ware product and relies on parts of our solution.

11.1 Implementation Platform

As a proof of concept, we realized our framework for process model change man-
agement in terms of a prototypic implementation. To speed up the development, we
decided to integrate our framework into an existing business process management
suite. In particular, we choose the IBM WebSphere software products (Version 6.2)
[IBM, 2009a] as our implementation platform. The IBM WebSphere software prod-
ucts support the different phases, such as Model, Develop, Deploy, Monitor, and
Analyze & Adapt of a typical business process management lifecycle as introduced
in Section 2.3 in Chapter 2.

In business process management, a business analyst creates high-level business
process models in the Model phase using the IBM WebSphere Business Mod-
eler (WBM) [IBM, 2009a]. The WBM provides state-of-the-art support for process
modeling and simulation. It relies on a proprietary modeling language that can be
visualized using the BPMN. The execution semantics of the language is based on
token flow and is very similar to UML Activity Diagrams [OMG, 2010b].

Figure 11.1 shows a screenshot of the IBM WBM. On the right hand side, the
two process models V and V2 of our running example are visualized (see ① and ②

in Figure 11.1). On the left hand side, a project tree is shown ③ that can be used to

178 11 Tool Support

access the individual process models and business objects of the current modeling
project.

Fig. 11.1 Process Modeling with the IBM WebSphere Business Modeler

Following the business process management lifecycle, high-level process mod-
els created with the WBM are further refined in the Develop phase to make them
executable. For that purpose, the IBM WebSphere Integration Developer (WID)1

[IBM, 2009a] can be used to transform a given high-level business process model
into a BPEL process model that is further enriched with implementation details.

Both software products, IBM WebSphere Business Modeler (WBM) and the
IBM WebSphere Integration Developer (WID) are based on the Eclipse platform
[Eclipse Foundation, 2011a]. We extended both tools by integrating our prototypic
framework for process model change management. In the following section, we give
a detailed overview of this implementation.

11.2 Overview of the Process Merging Solution

In this section, we report about our prototypic framework for process model change
management, which we have instantiated the framework for the IBM WebSphere
Business Modeler and the IBM WebSphere Integration Developer.

1 Since April 2011, WID is continued in the follow-on product IBM Integration Designer
[IBM, 2009a]

11.2 Overview of the Process Merging Solution 179

Table 11.1 gives an overview of the implemented aspects (denoted by filled cir-
cles) of our framework. Only, two aspects have not been implemented, namely the
equivalence analysis (see Chapter 8) and the conflict analysis based on the modeling
languages semantic as described in Chapter 9. However, these two aspects can be
integrated into the framework in the course of a single master thesis.

Table 11.1 Implemented Aspects of our Framework for Process Model Change Management

Framework for Process Model Change Management Implemented
Abstraction of process models into the intermediate representation ●

Decomposition of process models into fragments ●

Matching of process model versions ●

Difference detection between process model versions ●

Dependency analysis between compound change operations ●

Equivalence analysis of process models and fragments ❍

Syntax-based conflict detection between compound change opera-
tions as described in [Küster et al., 2009]

●

Semantic-based conflict detection between compound change oper-
ations as described in [Gerth et al., 2010a]

❍

Merging of process model versions ●∗

∗ The graph transformation rules that realize our compound change operations are not implemented in our pro-
totypic framework. However, they are supported in the Compare & Merge Framework of the IBM WebSphere
Business Modeler Version V7.0.

In addition to the prototypic implementation of the framework, certain aspects of
our solution are also used in the Compare & Merge Framework of the commercial
software product IBM WebSphere Business Modeler (Version 7) [IBM, 2009a]. We
report about this framework in Section 11.2.4.

In the next section, we give a brief architectural overview of our implementation.
Afterwards, we consider the reconstruction of a hierarchical change log and the
merging of process models using our framework in the Sections 11.2.2 and 11.2.3.
Finally, we conclude with a summary and discussion in Section 11.3.

11.2.1 Architectural Overview

Our framework for process model change management consists of several compo-
nents, which are shown in Figure 11.2.

Technically, the components are realized by several plug-ins using the plug-in
mechanism of the underlying Eclipse development platform. We distinguish be-
tween language-independent components that solely work on the intermediate rep-
resentation (see Chapter 3) and language-specific components that provide neces-
sary support for process models in a concrete modeling language. In the following,
we first consider language-independent components of our framework and after-
wards language-specific components.

180 11 Tool Support

Intermediate
Representation

Process Model Change
Management Generic

Process Model
Change Management

BPMN

Process Model
Matching

Intermediate
Representation
BPMN Adapter

Difference Detection Dependency
Analysis

Conflict Analysis

Language-specific Components

Language-independent Components

Legend

Fig. 11.2 Architecture of our Framework for Process Model Change Management

Language-Independent Components

In Figure 11.2, components with a light shaded background represent generic com-
ponents of our framework, which are independent of the process modeling language.
These components on its own constitute a solution for process model change man-
agement and can be used to merge process models.

The Intermediate Representation component serves as an abstract representation
of process models in a concrete modeling language, such as BPMN [OMG, 2011a]
or BPEL [OASIS, 2007]. In addition, this component is used to decompose process
models into fragments as described in Chapter 3.

The Process Model Matching component is capable to match two given versions
of a process model in the intermediate representation and results in a mapping con-
taining correspondences between related model elements. In this component, we
have implemented the basic functionality of the matching approach (i.e. the identity-
based matching) presented in Chapter 4. An elaborated matching component for
process models has been described and implemented in [Fazal-Baqaie, 2009].

Based on a mapping between process models, the Difference Detection compo-
nent identifies differences between two process models and captures these differ-
ences in terms of compound change operations (cf. Chapter 6). Thereby, a change
log is reconstructed. The Dependency Analysis component provides functionality
to identify dependencies between change operations in such a reconstructed change
log. Finally, in cases where a process model is individually refined by several users
and multiple change logs exist, the Conflict Analysis component is used to identify
pairs of change operations in these change logs whose application mutually exclude
each other (cf. Chapter 9).

The Process Model Change Management Generic component coordinates and
composes the previous components.

11.2 Overview of the Process Merging Solution 181

Language-Specific Components

The language-specific components of our framework are shown with a blue back-
ground in Figure 11.2 and are necessary to obtain an instantiation of our framework
for process models in a concrete modeling language - here for process models in the
BPMN [OMG, 2011a].

The Process Model Change Management BPMN component is a BPMN-specific
instantiation of our framework. It adapts the order of component invocations of the
Process Model Change Management Generic component to BPMN-specific needs.

An example for such an adaptation is the invocation of the Intermediate Repre-
sentation BPMN Adapter component, which is responsible of transforming BPMN
process models into our language-independent intermediated representation (IR).
For that purpose, the component comprises a mapping between BPMN model ele-
ments and IR model elements. To enable the traceability from IR model elements
back to their underlying BPMN model elements, the component establishes links
during the transformation of BPMN models into IR models.

In addition to the BPMN-specific instantiation shown in Figure 11.2, we have in-
stantiated our prototypic framework also for change management of BPEL process
models [OASIS, 2007] in the IBM WebSphere Integration Developer [IBM, 2009a].
To that extend, we substituted the BPMN-specific components in Figure 11.2 by
BPEL-specific components. Language-independent components are reused without
modification.

11.2.2 Reconstruction of a Hierarchical Change Log

For the reconstruction of a change log between two process model versions all com-
ponents introduced in the architectural overview (cf. Figure 11.2) are used.

First, the Process Model Matching component computes a mapping between two
process model versions relying on the matching strategies described in Chapter 4.
Based on this mapping, an initial change log is created by overlapping the fragment
hierarchies of the two process models. Differences that are computed by the Dif-
ference Detection component are added to this change log in such a way that each
change operation is assigned to the fragment, which is affected by the application of
the operation (Chapter 6). Finally, the reconstruction of an hierarchical change log
is completed by identifying dependencies between contained change operations as
described in Chapter 7.

To visualize a reconstructed hierarchical change log to a business user in the
IBM WebSphere Business Modeler, we have developed a merge view that is shown
in Figure 11.3.

This two-way merge view shows the differences between the process model ver-
sions V and V2 of our example introduced in Figure 1.3 and consists of three parts:
On the left hand side the elements contained in process model version V are shown

182 11 Tool Support

Fig. 11.3 Iterative Change Application using our prototypic Two-Way Merge View in the
IBM WebSphere Business Modeler

(see ① in Figure 11.3). Analogously, on the right hand side the model elements
contained in process model V2 are listed (see ② in Figure 11.3). The reconstructed
change log Δ(V,V2) representing the differences between the two process model
versions is shown in the middle ③.

How process model versions can be merged using this view is addressed in the
next section.

11.2.3 Merging of Process Models

For the merging of process models, we provide two merge views2 in our prototypic
framework, which we briefly introduce in the following. We begin with a two-way
merge view for iterative and automatic merging of process models, followed by a
three-way merge view for the merging of process models in distributed modeling
scenarios.

2 Please note that our prototypic implementation currently only supports the visualization
of the differences between process model versions, as well as dependencies and conflicts
between them. Full merging supported is provided in the Compare & Merge Framework
of the IBM WebSphere Business Modeler Version V7.0.

11.2 Overview of the Process Merging Solution 183

Two-Way Merge

Based on the view visualized in Figure 11.3, two process models can be merged by
applying change operations contained in the hierarchical change log ③. The change
log contains compound change operations that are arranged according to the hier-
archical structure of the underlying process models. These change operations rep-
resent the differences between the two process models V and V2, whose model el-
ements are shown in ① and ② of Figure 11.3. By applying all change operations
contained in the change log on the process model V , V is transformed into V2.

As described in Chapter 7, change operations may dependent on the application
of other change operations or they are independent. Dependent change operations
are grayed out in the view (see ③) and cannot be applied until all required change
operations are applied before.

In order to merge two process models, a user can select and apply change oper-
ations in the hierarchical change log ③ in an iterative way until all desired change
operations are applied.

Fig. 11.4 Automatic Change Application using our prototypic Two-Way Merge View in the
IBM WebSphere Business Modeler

To speed up the merging of process models, change operations can also be ap-
plied automatically using our view (see Figure 11.4). Here, a user can either decide
to apply all compound change operations or a valid subset of change operations. In
the former case, a possible application order for all compound change operation in
the hierarchical change log is computed, that respects the dependencies among the
change operations. In the latter case, a user first selects a subset of change oper-
ations that shall be applied. For this subset, an algorithm evaluates the validity of
the selection of change operations and then suggests a possible application order
of the operations in this subset. A subset of change operations is valid if all oper-
ations that are required by a dependent operation in the subset are also contained
in the subset. In the case that a required change operation is not selected, the re-
quired change operation is added to the subset of selected operations and the user is

184 11 Tool Support

informed. Figure 11.4 shows a possible application order of a subset of compound
change operations contained in the hierarchical change log Δ(V,V2).

Three-Way Merge

To support scenarios, where multiple users individually modify process models and
different versions are created, we developed a three-way merge view. This view can
be used to merge two different process model versions while considering their com-
mon ancestor version. Figure 11.5 shows a screenshot of a three-way merge view of
our example process model V and its descendant versions V1 and V2 introduced in
Figure 1.3.

The three-way merge view consists of several parts indicated in Figure 11.5: The
tree views of the process model versions V1 and V2 (① and ②) and two hierarchical
change logs Δ(V,V1) and Δ(V,V2) (③ and ④).

11.2 Overview of the Process Merging Solution 185

F
ig

.1
1.

5
M

er
gi

ng
an

d
C

on
fl

ic
tR

es
ol

ut
io

n
us

in
g

ou
r

pr
ot

ot
yp

ic
T

hr
ee

-W
ay

M
er

ge
V

ie
w

in
th

e
IB

M
W

eb
S

ph
er

e
B

us
in

es
s

M
od

el
er

186 11 Tool Support

In three-way merge scenarios, we additionally have to identify and visualize
conflicts between change operations contained in the change logs. In general, two
change operations are in conflict if they mutually exclude each other. In our pro-
totypic implementation, we implemented the syntax-based conflict detection ap-
proach, which we have presented in our earlier publication [Küster et al., 2009].

Using the three-way merge view, the process models V , V1, and V2 can be con-
solidated by applying compound change operations contained in the hierarchical
change logs Δ(V,V1) and Δ(V,V2). If a change operation is selected in one of the
change log, which is in conflict with another operation from the other change log,
this conflict is visualized to the user by highlighting the underlying change opera-
tions.

11.2.4 Compare and Merge Framework of the IBM WebSphere
Business Modeler

In addition to the prototypic implementation of the framework, certain aspects of
our solution for process model change management are also used in the Compare&
Merge Framework in the commercial IBM WebSphere Business Modeler (Version
7) [IBM, 2009a]. In particular, our techniques for differences detection based on
fragments and the dependency analysis are used in the commercial software product.

The Compare&Merge Framework is used to merge two process model versions.
To give an example, when a newer version of an existing process model (or entire
process modeling project) is imported into the local modeling workspace the Com-
pare & Merge Framework is used to integrate the different process model versions.
For that purpose, differences between the two versions are first computed in terms
of change operations in such a way that the application of all change operations
transforms the local version of the process model into the imported process model
version. Then a subset of the change operations can be selected, which shall be
applied on the local version of the process model.

Figure 11.6 shows a screenshot of the Compare & Merge Framework. The user
interface of the framework consists of three parts: ① A project tree that shows the
changed process models of the project. ② For each pair of process model versions,
a list of change operation representing the differences between the process models.
③ A visual representation of the local process model in the workspace.

In order to merge the process models, changes that shall be applied on the local
version of a process model can be selected in the change list. The impact of the
selected changes is immediately visualized in the representation of the local version
of the process model (see ② and ③ in Figure 11.6).

11.3 Summary and Discussion

We have presented our prototypic framework for process model change manage-
ment, which we have instantiated for two commercial software products, namely the
IBM WebSphere Business Modeler (WBM) [IBM, 2009a] and the IBM WebSphere

11.3 Summary and Discussion 187

Fig. 11.6 Compare and Merge Framework of the IBM WebSphere Business Modeler Version
7.0 [IBM, 2009a]

Integration Developer (WID) [IBM, 2009a] (both Version 6.2). The framework ex-
tends these software products with effective tool support for the merging of different
process model versions.

We realized the prototypic framework using several plug-ins in a language-
independent way. Overall, the instantiation of the framework for BPMN process
models of the WBM consists of more than 20k lines of code. Roughly 80% of the
code base are language-independent and can be used without modification also for
the merging of BPEL process models in the WID.

Parts of our implementation also contributed to the Compare & Merge Frame-
work of the IBM WebSphere Business Modeler Version 7 [IBM, 2009a], which was
realized as an IBM product in 2009.

In the next chapter, we conclude this book and give an outlook on future work.

12

Conclusion

In this book, we have presented our framework for process model change manage-
ment as a solution for model versioning support in distributed model-driven devel-
opment approaches of software systems. We presented the prototypic implementa-
tion of our framework as well as the parts that found their way into the Compare &
Merge Framework of the commercial IBM WebSphere Business Modeler (Version
7) [IBM, 2009a].

In this concluding chapter, we first summarize our contributions in Section 12.1.
Then, we consider future works in process model change management in Sec-
tion 12.2 and, finally in Section 12.3, we conclude with final remarks and discuss
lessons learned in the course of this work.

12.1 Contribution Summary

The goal of this book was to develop a solution for process model change man-
agement that enables the merging of different process model versions into an in-
tegrated process model. For that purpose, it is required that differences between
different versions are identified in a suitable granularity that supports the merg-
ing of the process models. Further, to enable a high degree of automation within
merging of different process model versions, it is important to identify dependen-
cies and conflicts of differences. In addition, we required that a solution shall be
generically applicable to process models in commonly used modeling languages,
such as BPMN [OMG, 2011a], UML Activity Diagrams [OMG, 2010b], and BPEL
[OASIS, 2007].

To achieve the goals of this book, we presented a framework for process model
change management. Figure 12.1 gives an overview of the framework’s components
together with the contributing concepts and approaches. In the following, we sum-
marize the contributions along the structure of our framework for process model
change management.

190 12 Conclusion

Framework for Process
Model Change Management

1. Intermediate Representation for Process Modeling Languages
Syntax & semantics definition
Elimination of syntactic redundancies

Decomposition into fragments
Mapping from BPMN to IR

2. Matching of Process Models in Versioning Scenarios
Match model & correspondences
Partial & complete mappings

Implicit relationships between splitting
& joining gateways

3. Difference Representation & Detection
Compound change operations
Reconstruction of a change log

Hierarchical change log
Position parameters

4. Dependency Analysis
Transformation dependencies
J PST dependencies

Dynamic specification of change
operations

5. Equivalence Analysis
Process model terms
Term rewriting system

Semantically equivalent fragments &
process models

6. Conflict Analysis
Syntactic & semantic conflicts Method for precise conflict detection

7. Merging of Process Models
Transformation into language specific
change operations

Resolution strategies

Fig. 12.1 Framework for Process Model Change Management with Contribution Overview

1. Intermediate Representation for Process Modeling Languages

To generalize our framework for process model change management, we intro-
duced the intermediate representation as a common representation of process mod-
els in different modeling languages. We focus to support the commonly used model-
ing languages BPMN [OMG, 2011a], UML Activity Diagrams [OMG, 2010b], and
BPEL [OASIS, 2007]. Models in these languages can be abstracted to the IR. This
enables us to compare and analyze process models for the purpose of model merging
- independent from the concrete modeling languages of the process models.

12.1 Contribution Summary 191

We defined the syntax of the IR in terms of a meta-model and specified the se-
mantics of IR process models formally using typed graph transformation rules. By
focusing on core concepts of process modeling languages, such as activities, events,
and gateways, the IR helps to eliminate syntactic redundant model elements of con-
crete process modeling languages.

Further, we introduced an approach for the decomposition of process models into
fragments, which enclose nested subgraphs with distinguished behaviors. Thereby,
we made the implicit structure of IR process models explicit and harmonize block-
oriented and graph-oriented process modeling languages, like BPEL and BPMN.
Finally, we described a mapping of a core subset of the BPMN to the IR.

2. Matching of Process Models

Based on process models in the intermediate representation, we introduced an
approach to match process models in versioning scenarios. For that purpose, we
proposed a match model consisting of correspondences between related model el-
ements. We introduced the concept of a partial mapping that is based on model
elements that are common in all versions. Such a partial mapping can be created
and updated automatically in versioning scenarios. Based on the partial mapping,
we then described an approach to compute mappings between versions of process
models. To that extend, we apply different matching strategies including identity-
based and similarity-based matching strategies.

Moreover, our matching approach for process models is able to identify implicit
relationships between splitting and joining gateways within a single process model,
which constitute a subgraph with a distinguished behavior, such as parallel or alter-
native structures. The identification of these relationships is based on the decompo-
sition of process models into fragments.

3. Difference Representation and Difference Detection

For the representation of differences between process models, we introduced a
difference model based on compound change operations that comprise several
related elementary changes. Compound change operations turned out to be more
suitable for the representation of differences in change management of process mod-
els [Weber et al., 2007, Küster et al., 2008b]. Due to their coarser granularity, com-
pound change operations require far less user interactions to merge different process
models than approaches based on elementary changes.

In order to detect differences between different process model versions, we pro-
posed an approach that results in a reconstructed change log consisting of compound
change operations. To enable an intuitive and natural understanding of the differ-
ences between process models, we further transformed the reconstructed change log
into a hierarchical change log. The idea of a hierarchical change log is to arrange
compound change operations according to the structure of the underlying process
models. Thereby, differences are directly located to the fragment of a process model,
which is affected by the difference. Finally, we considered the computation of po-
sition parameters of compound change operations that specify the predecessor and
the successor of a modified model element in a change operation.

192 12 Conclusion

4. Dependency Analysis

Compound change operations that represent differences between two process mod-
els, may depend on each other. That means, the application of a change operation re-
quires the prior application of another change operations. These dependencies need
to be computed before process models can be merged. Otherwise potentially uncon-
nected process models are created. We introduced two different notions of depen-
dencies: transformation dependencies and Joint−PS T dependencies, and provided
approaches to identify both notions of dependencies.

The former approach, computes dependencies between compound change oper-
ations, whose position parameter have been fixed. The approach is based on the
existing notion of dependencies between graph transformations of typed attribute
graphs. In contrast to transformation dependencies, Joint − PS T dependencies can
be computed even between compound change operations, whose position param-
eters have not been specified yet. The computation of Joint − PS T dependencies
is based on the concept of dynamic specification of change operations that dynam-
ically computes position parameters after each application of a change operation.
Using Joint − PS T dependencies and dynamic specification of change operations,
different business process models can be integrated by applying change operations
without being unnecessarily restricted to a certain application order.

5. Equivalence Analysis of Process Models and contained Fragments

We proposed an approach for deciding equivalence between business process mod-
els based on a normalization of syntactically different but semantically equivalent
fragments. In our approach, we transform process models into process model terms.
These terms are then normalized by a term rewriting system. We have examined the
correct functional behavior of the term rewriting system for process model terms
using existing theory for abstract reduction systems. Based on process model terms
in their normal form, we decide semantic equivalence of process model fragments
and entire process models.

The approach combines the benefits of syntactic and semantic comparison ap-
proaches to decide equivalences between process models and contained fragments.
Thereby, we overcome the shortcomings of approaches based on trace equivalence,
such as computational complexity or the need to analyze different sets of traces to
identify the actual difference between traces.

6. Conflict Analysis

Whenever process models are modified independently by applying change opera-
tions, there might be the case that change operations are conflicting. Two change
operations are conflicting if the application of one operation turns the other one
inapplicable. For conflict analysis, we first distinguished conflicting change opera-
tions into syntactic and semantic conflicts. Based on these conflict notions, we then
introduced a method for conflict analysis between compound change operations.

Our method avoids false-positive conflicts between change operations that mod-
ify syntactically different fragments that are semantically equivalent. To that extent,

12.2 Outlook on Future Work 193

we applied our approach to equivalence analysis for process models and fragments.
Our initial results have shown that taking the semantics of process modeling lan-
guages into account, helps to compute precise conflicts and avoids false-positive
conflicts.

7. Merging of Process Models

Finally, we considered the merging of different process models by applying com-
pound change operations. We first showed how generic change operations based
on models in the intermediate representation are translated into language-specific
change operations, which are applicable on process models in a concrete model-
ing language. For the application of non-conflicting change operations, we intro-
duced two methods: one for the iterative application of change operations requiring
user intervention and one for the automatic application of compound change opera-
tions, which first computes an execution order. Finally, we proposed three different
strategies for the resolution of conflicts between change operations together with a
method that guides a user through conflict resolution when merging process models.

To show the feasibility of our solution for process model change manage-
ment, we implemented tool support for most of the components in our framework.
The tool support is integrated in the IBM WebSphere Business Modeler (WBM)
[IBM, 2009a] and the IBM WebSphere Integration Developer (WID) [IBM, 2009a].
Parts of this work contributed also to the Compare & Merge framework of the IBM
WebSphere Business Modeler V 7.0 [IBM, 2009a], which was released as an IBM
product in fall 2009.

12.2 Outlook on Future Work

There are some issues that are currently not covered by our solution to process
model change management, which might be addressed in future work.

Our proposed intermediate representation serves as an abstraction of commonly
used concrete process modeling languages, such as BPMN [OMG, 2011a], UML
Activity Diagrams [OMG, 2010b], and BPEL [OASIS, 2007]. This abstraction does
not consider specialized model elements, such as BPMN Pools that represent partic-
ipants in BPMN processes and are used to for partitioning of activities. Future work
can extend the intermediate representation by such specialized model elements.

Moreover, the flow of business objects in process models, also known as data
flow, is not yet addressed in our approach. The support of data flow in the inter-
mediate representation might also result in new dependencies and conflicts between
change operations. For instance, the insertion of an activity may require the inser-
tion of another activity to fulfill requirements with regards to input/output data. In
this context, the approach to consistency of object life cycles in process models pre-
sented in [Wahler, 2009] can serve as a foundation for the integration of data flow
support in our approach.

We have introduced an approach to match different process model versions in
Chapter 4 that focuses on 1-1 correspondences between model elements. Future

194 12 Conclusion

work can extend this approach to support also 1:n, n:1, or n:m correspondences be-
tween model elements. These more complex correspondences reflect scenarios in
which, e.g. single model elements have been refined into several model elements.
A promising step towards the automated identification of such correspondences is
described in [Weidlich et al., 2010]. There, the ICOP framework is presented, that
can be used to match activities contained in different process models and addition-
ally provides an approach to identify correspondences between a single activity and
a group of activities.

Currently, our approach for equivalence analysis identifies equivalences on the
level of fragments contained in process models. That means, semantically equiva-
lent substructures in process models, which are not enclosed in matching fragments
cannot be identified using our approach. For instance, let us consider two process
models V1 and V2. In V1 a cyclic fragment (e.g. a BPMN Loop) exists that executes a
sequence of activities iteratively, e.g. three times. In contrast to V1, in process model
V2, this cyclic fragment is rolled out, i.e. the sequence of activities is modeled three
times resulting in a larger sequential fragment. Considering trace equivalence, the
obtainable traces of activity executions in both process model fragments are equal.
However, since the types of the fragments do not match (cyclic fragment vs. sequen-
tial fragment), the semantic equivalence is not identified by our approach.

Such equivalences could be identified by establishing a pre-processing step that
normalizes process models before they are compared. For that purpose, our term
rewriting system (cf. Section 8.3 in Chapter 8) could be extended by further reduc-
tion rules that capture syntactic redundant structures.

Finally, our framework does not yet support change management across model-
ing language boundaries, e.g. the synchronization of BPMN process models with
BPEL processes. However, we believe that the use of a common representation of
process models, like our intermediate representation, eases the realization of a so-
lution for change management across language boundaries. One reason for this is
that in our framework process models can be compared in a common representation,
e.g. for difference detection. As a first step towards the extension of our framework
for change management across language boundaries, a partial mapping between the
meta-models of different modeling languages is required.

12.3 Final Remarks

The contributions achieved in this book support the model-driven development
(MDD) of complex software systems, as a promising development methodology
that is able to cope with the increasing complexity of today’s software systems.

We are convinced that MDD can only deliver its full potential benefits if suitable
tools are provided that support the distributed development of models properly. This
requires in particular adequate model versioning support that is tailored to meet the
specific requirements of different modeling languages.

In the course of our work, we have noticed that generic approaches to model
versioning are often not suited when it comes to specific modeling languages. For

12.3 Final Remarks 195

instance in the case of process modeling languages, generic approaches do not
consider the semantics of concrete modeling languages. As a consequence, the
described shortcomings are obtained, such as the limitation on elementary differ-
ences or false-positive conflicts, since semantic equivalences between models re-
main undiscovered. We see this as a hint on limitations of generic approaches to
model versioning.

During the abstraction of different concrete process modeling languages to our
intermediate representation, we observed that current ways to specify the semantics
of modeling languages in natural language hardens their understandability and re-
sults in mismatches due to their ambiguity. Precise and formal semantic definitions
are urgently necessary, which can be specified, e.g. by applying the Dynamic Meta
Modeling approach [Engels et al., 2000, Hausmann, 2005].

To completely support the development cycle of business-driven development as
introduced in Section 2.3 in Chapter 2, models used from different development
phases need to be synchronized. For instance, analysis models used in early devel-
opment phases to describe what a process is doing on a high-level of abstraction,
must be synchronized with design models, which have been enriched during de-
velopment with, e.g. data flow and the underlying decision logic. For that purpose,
so far no solution exists. We believe that the development of such a solution may
benefit from our framework for process model change management as mentioned
above.

Despite these open gaps, we believe that business process modeling and model-
driven development are moving in the right direction. We are convinced that the
issues described here will be addressed by suitable solutions in the course of the
maturing of the areas.

References

Alanen and Porres, 2003. Alanen, M., Porres, I.: Difference and Union of Models. In:
Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 2–17.
Springer, Heidelberg (2003)

Altmanninger, 2007. Altmanninger, K.: Models in Conflict - Towards a Semantically En-
hanced Version Control System for Models. In: Giese, H. (ed.) MODELS 2008. LNCS,
vol. 5002, pp. 293–304. Springer, Heidelberg (2008)

Altmanninger et al., 2008. Altmanninger, K., Kappel, G., Kusel, A., Retschitzegger, W.,
Seidl, M., Schwinger, W., Wimmer, M.: AMOR - Towards Adaptable Model Version-
ing. In: Proceedings of the 1st International Workshop on Model Co-Evolution and
Consistency Management, MCCM (2008)

Baader and Nipkow, 1998. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge
University Press, Cambridge (1998)

Bae et al., 2006. Bae, J., Caverlee, J., Liu, L., Yan, H.: Process Mining by Measuring Pro-
cess Block Similarity. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS,
vol. 4103, pp. 141–152. Springer, Heidelberg (2006)

Booch, 1994. Booch, G.: Object-Oriented Analysis and Design with Applications. Addison
Wesley Longman Publishing Co., Inc., Redwood City (1994)

Bottoni et al., 2000. Bottoni, P., Schürr, A., Taentzer, G.: Efficient Parsing of Visual Lan-
guages based on Critical Pair Analysis and Contextual Layered Graph Transformation.
In: Proceedings of the IEEE International Symposium on Visual Languages (VL), pp.
59–60. IEEE Computer Society (2000)

Brosch et al., 2010. Brosch, P., Kappel, G., Seidl, M., Wieland, K., Wimmer, M., Kargl, H.,
Langer, P.: Adaptable Model Versioning in Action. In: Proceedings of Modellierung
2010. LNI, vol. 161, pp. 221–236. GI (2010)

Brosch et al., 2009. Brosch, P., Langer, P., Seidl, M., Wimmer, M.: Towards End-User
Adaptable Model Versioning: The By-Example Operation Recorder. In: Proceedings
of the ICSE Workshop on Comparison and Versioning of Software Models (CVSM),
pp. 55–60. IEEE (2009)

Brun and Pierantonio, 2008. Brun, C., Pierantonio, A.: Model Differences in the Eclipse
Modelling Framework. CEPIS Upgrade - The European Journal for the Informatics
Professional IX(2), 29–34 (2008)

Chawathe et al., 1996. Chawathe, S.S., Rajaraman, A., Garcia-Molina, H., Widom, J.:
Change Detection in Hierarchically Structured Information. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data, SIGMOD 1996,
pp. 493–504. ACM, New York (1996)

198 References

Chen, 1976. Chen, P.P.-S.: The entity-relationship model—toward a unified view of data.
ACM Trans. Database Syst. 1(1), 9–36 (1976)

Cicchetti et al., 2007. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: A Metamodel Indepen-
dent Approach to Difference Representation. Journal of Object Technology (JOT) 6(9),
165–185 (2007)

Cicchetti et al., 2008. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Managing Model Con-
flicts in Distributed Development. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A.,
Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 311–325. Springer, Heidelberg
(2008)

Coad and Yourdon, 1991. Coad, P., Yourdon, E.: Object-oriented analysis, 2nd edn. Yourdon
Press, Upper Saddle River (1991)

Corradini et al., 1994. Corradini, A., Ehrig, H., Löwe, M., Montanari, U., Padberg, J.: The
Category of Typed Graph Grammars and its Adjunctions with Categories. In: Cuny, J.,
Engels, G., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1994. LNCS, vol. 1073,
pp. 56–74. Springer, Heidelberg (1996)

Corradini et al., 1997. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe,
M.: Algebraic Approaches to Graph Transformation Part I: Basic Concepts and Double
Pushout Approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Com-
puting by Graph Transformation. Foundations, vol. 1, pp. 163–245. World Scientific
(1997)

CVS, 2011. CVS, Concurrent Version System (2011), http://www.nongnu.org/cvs
de Lara et al., 2007. de Lara, J., Bardohl, R., Ehrig, H., Ehrig, K., Prange, U., Taentzer,

G.: Attributed graph transformation with node type inheritance. Theor. Comput.
Sci. 376(3), 139–163 (2007)

Dijkman, 2007. Dijkman, R.: A Classification of Differences between Similar Business Pro-
cesses. In: Proceedings of the 11th IEEE International Enterprise Distributed Object
Computing Conference (EDOC), pp. 37–50. IEEE Computer Society (2007)

Dijkman, 2008. Dijkman, R.: Diagnosing Differences between Business Process Models. In:
Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 261–
277. Springer, Heidelberg (2008)

Dumas et al., 2005. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware
Information Systems: Bridging People and Software Through Process Technology. Wi-
ley (2005)

Dustdar et al., 2006. Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.): BPM 2006. LNCS,
vol. 4102. Springer, Heidelberg (2006)

Eclipse Foundation, 2009. Eclipse Foundation, Atlas Model Weaver (AMW) (2009),
http://www.eclipse.org/gmt/amw/

Eclipse Foundation, 2011a. Eclipse Foundation, Eclipse Development Platform (2011a),
http://www.eclipse.org/

Eclipse Foundation, 2011b. Eclipse Foundation, Eclipse Modeling Framework (2011b),
http://www.eclipse.org/emf/

Eclipse Foundation, 2011c. Eclipse Foundation, EMF Compare (2011c),
http://www.eclipse.org/emf/compare/

Eder et al., 2005. Eder, J., Gruber, W., Pichler, H.: Transforming Workflow Graphs. In: Pro-
ceedings of the 1st International Conference on Interoperability of Enterprise Software
and Applications (INTEROP-ESA), pp. 203–214. Springer (2005)

Edwards, 1997. Edwards, W.K.: Flexible Conflict Detection and Management in Collabo-
rative Applications. In: Proceedings of the 10th ACM Symposium on User Interface
Software and Technology (UIST), pp. 139–148. ACM (1997)

http://www.nongnu.org/cvs
http://www.eclipse.org/gmt/amw/
http://www.eclipse.org/
http://www.eclipse.org/emf/
http://www.eclipse.org/emf/compare/

References 199

Ehrig et al., 1999. Ehrig, H., Engels, G., Rozenberg, H.J., Rozenberg, G. (eds.): Handbook
of Graph Grammars and Computing by Graph Transformation. Applications, Lan-
guages and Tools, vol. 2. World Scientific Publisher (1999)

Ehrig et al., 2004. Ehrig, H., Prange, U., Taentzer, G.: Fundamental Theory for Typed At-
tributed Graph Transformation. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 161–177. Springer, Heidelberg (2004)

Ehrig et al., 2007. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring Similarity between
Semantic Business Process Models. In: Roddick, J.F., Hinze, A. (eds.) Proceedings of
the 4th Asia-Pacific Conference on Conceptual Modelling (APCCM). CRPIT, vol. 67,
pp. 71–80. Australian Computer Society (2007)

Ekanayake et al., 2011. Ekanayake, C.C., La Rosa, M., ter Hofstede, A.H.M., Fauvet, M.-C.:
Fragment-Based Version Management for Repositories of Business Process Models. In:
Meersman, R., Dillon, T., Herrero, P., Kumar, A., Reichert, M., Qing, L., Ooi, B.-C.,
Damiani, E., Schmidt, D.C., White, J., Hauswirth, M., Hitzler, P., Mohania, M. (eds.)
OTM 2011, Part I. LNCS, vol. 7044, pp. 20–37. Springer, Heidelberg (2011)

Engels et al., 2000. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic Meta-
Modeling: A Graphical Approach to the Operational Semantics of Behavioral Diagrams
in UML. In: Evans, A., Caskurlu, B., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp.
323–337. Springer, Heidelberg (2000)

Engels et al., 2007. Engels, G., Soltenborn, C., Wehrheim, H.: Analysis of UML Activities
Using Dynamic Meta Modeling. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS
2007. LNCS, vol. 4468, pp. 76–90. Springer, Heidelberg (2007)

Erl, 2005. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Pren-
tice Hall PTR, NJ (2005)

Fazal-Baqaie, 2009. Fazal-Baqaie, M.: Structural Matching of Process Models for Change
Detection. Master’s thesis, University of Paderborn, Germany (2009)

Fowler et al., 1999. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring:
Improving the Design of Existing Code, 1st edn. Addison-Wesley Professional (1999)

Gantt, 1919. Gantt, H.L.: Organizing for Work. Organizing for Work. Harcourt, Brace and
Howe (1919)

Gerth et al., 2009. Gerth, C., Küster, J.M., Engels, G.: Language-Independent Change Man-
agement of Process Models. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS,
vol. 5795, pp. 152–166. Springer, Heidelberg (2009)

Gerth et al., 2010a. Gerth, C., Küster, J.M., Luckey, M., Engels, G.: Precise Detection of
Conflicting Change Operations using Process Model Terms. In: Petriu, D.C., Rouquette,
N., Haugen, Ø. (eds.) MODELS 2010, Part II. LNCS, vol. 6395, pp. 93–107. Springer,
Heidelberg (2010a)

Gerth et al., 2011a. Gerth, C., Küster, J.M., Luckey, M., Engels, G.: Detection and Reso-
lution of Conflicting Change Operations in Version Management of Process Models.
Software and Systems Modeling (2011a),
http://dx.doi.org/10.1007/s10270-011-0226-8

Gerth et al., 2010b. Gerth, C., Luckey, M., Küster, J.M., Engels, G.: Detection of Semanti-
cally Equivalent Fragments for Business Process Model Change Management. In: Pro-
ceedings of the 7th IEEE International Conference on Services Computing (SCC), pp.
57–64. IEEE Computer Society (2010b)

Gerth et al., 2011b. Gerth, C., Luckey, M., Küster, J.M., Engels, G.: Precise Mappings be-
tween Business Process Models in Versioning Scenarios. In: Proceedings of the 8th
IEEE International Conference on Services Computing (SCC), pp. 218–225. IEEE
Computer Society (2011b)

http://dx.doi.org/10.1007/s10270-011-0226-8

200 References

Hausmann, 2005. Hausmann, J.H.: Dynamic Meta Modeling. PhD thesis, University of
Paderborn (2005)

Hausmann et al., 2002. Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of Conflicting
Functional Requirements in a Use Case-driven Approach: A static Analysis Technique
based on Graph Transformation. In: Proceedings of the 24th International Conference
on Software Engineering (ICSE), pp. 105–115. ACM (2002)

Heckel et al., 2002. Heckel, R., Küster, J.M., Taentzer, G.: Confluence of Typed Attributed
Graph Transformation. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G.
(eds.) ICGT 2002. LNCS, vol. 2505, pp. 161–176. Springer, Heidelberg (2002)

IBM, 2009a. (IBM), I. B. M. C, IBM WebSphere Business Modeler Version 6.2 (2009a),
http://www.ibm.com/software/integration/wbimodeler/

IBM, 2009a. (IBM), I. B. M. C, IBM WebSphere Integration Developer (2009b),
http://www.ibm.com/software/integration/wid/

IBM, 2009a. (IBM), I. B. M. C, IBM Integration Designer (2011a),
http://www.ibm.com/software/integration/integration-designer/

IBM, 2009a. (IBM), I. B. M. C, IBM WebSphere Business Modeler Version 7 (2011b),
http://www.ibm.com/software/integration/wbimodeler/advanced/

IBM, 2009a. (IBM), I. B. M. C, IBM WebSphere Software Products (2011c),
http://www.ibm.com/software/websphere/

Jacobson et al., 1992. Jacobson, I., Christerson, M., Jonsson, P., Övergaard, G.: Object-
Oriented Software Engineering - A Use Case Driven Approach. Addison-Wesley (1992)

Johnson et al., 1994. Johnson, R., Pearson, D., Pingali, K.: The Program Structure Tree:
Computing Control Regions in Linear Time. In: Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pp. 171–
185 (1994)

Johnson et al., 1993. Johnson, R.C., Pearson, D., Pingali, K.: Finding regions fast: Single
entry single exit and control regions in linear time. Technical Report TR93-1365 (1993)

Keller et al., 1992. Keller, G., Nüttgens, M., Scheer, A.W.: Semantische Prozeßmodellierung
auf der Grundlage Ereignisgesteuerter Prozeßketten (EPK). Technical Report 89 (1992)

Kelter et al., 2005. Kelter, U., Wehren, J., Niere, J.: A Generic Difference Algorithm for
UML Models. In: Liggesmeyer, P., Pohl, K., Goedicke, M. (eds.) Proceedings of Soft-
ware Engineering 2005, vol. 64, pp. 105–116. GI (2005)

Kiepuszewski, 2002. Kiepuszewski, B.: Expressiveness and Suitability of Languages for
Control Flow Modelling in Workflows. PhD thesis, Queensland University of Tech-
nology, Brisbane, Australia (2002)

Kindler et al., 2005. Kindler, E., Rubin, V., Schäfer, W.: Incremental Workflow Mining
Based on Document Versioning Information. In: Li, M., Boehm, B., Osterweil, L.J.
(eds.) SPW 2005. LNCS, vol. 3840, pp. 287–301. Springer, Heidelberg (2006)

Kindler et al., 2006. Kindler, E., Rubin, V., Schäfer, W.: Incremental Workflow Mining for
Process Flexibility. In: Regev, G., Soffer, P., Schmidt, R. (eds.) BPMDS. CEUR Work-
shop Proceedings, vol. 236. CEUR-WS.org (2006)

Koehler et al., 2008. Koehler, J., Hauser, R., Küster, J.M., Ryndina, K., Vanhatalo, J.,
Wahler, M.: The Role of Visual Modeling and Model Transformations in Business-
driven Development. Electr. Notes Theor. Comput. Sci. 211, 5–15 (2008)

Kögel, 2008. Kögel, M.: Towards Software Configuration Management for Unified Mod-
els. In: Proceedings of the International Workshop on Comparison and Versioning of
Software Models (CVSM), pp. 19–24. ACM (2008)

Kögel et al., 2010. Kögel, M., Herrmannsdoerfer, M., von Wesendonk, O., Helming, J.:
Operation-based Conflict Detection. In: Proceedings of the 1st International Workshop
on Model Comparison in Practice (IWMCP), pp. 21–30. ACM (2010)

http://www.ibm.com/software/integration/wbimodeler/
http://www.ibm.com/software/integration/wid/
http://www.ibm.com/software/integration/integration-designer/
http://www.ibm.com/software/integration/wbimodeler/advanced/
http://www.ibm.com/software/websphere/

References 201

Kolovos et al., 2009. Kolovos, D.S., Di Ruscio, D., Pierantonio, A., Paige, R.F.: Different
Models for Model Matching: An analysis of approaches to support model differencing.
In: Proceedings of the Workshop on Comparison and Versioning of Software Models
(CVSM), CVSM 2009, pp. 1–6. IEEE Computer Society (2009)

Küster et al., 2008a. Küster, J., Gerth, C., Förster, A., Engels, G.: A Tool for Process Merg-
ing in Business-Driven Development. In: Bellahsène, Z., Coletta, R., Franch, X., Hunt,
E., Woo, C. (eds.) Proceedings of the Forum at the 20th International Conference on Ad-
vanced Information Systems Engineering (CAiSE), pp. 89–92. CEUR-WS.org (2008a)

Küster, 2004. Küster, J.M.: Consistency Management of Object-Oriented Behavioral Mod-
els. PhD thesis, University of Paderborn, Germany (2004)

Küster, 2006. Küster, J.M.: Definition and validation of model transformations. Software and
Systems Modeling 5(3), 233–259 (2006)

Küster et al., 2009. Küster, J.M., Gerth, C., Engels, G.: Dependent and Conflicting Change
Operations of Process Models. In: Paige, R.F., Hartman, A., Rensink, A. (eds.)
ECMDA-FA 2009. LNCS, vol. 5562, pp. 158–173. Springer, Heidelberg (2009)

Küster et al., 2010. Küster, J.M., Gerth, C., Engels, G.: Dynamic Computation of Change
Operations in Version Management of Business Process Models. In: Kühne, T., Selic,
B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS, vol. 6138, pp. 201–216.
Springer, Heidelberg (2010)

Küster et al., 2008b. Küster, J.M., Gerth, C., Förster, A., Engels, G.: Detecting and Resolv-
ing Process Model Differences in the Absence of a Change Log. In: Dumas, M., Re-
ichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 244–260. Springer,
Heidelberg (2008b)

Letkeman, 2005. Letkeman, K.: Comparing and merging UML models in IBM Rational
Software Architect: Part 3. A deeper understanding of model merging. IBM Devel-
operworks (2005)

Levenshtein, 1966. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Inser-
tions and Reversals. Soviet Physics Doklady 10, 707 (1966)

Li et al., 2008. Li, C., Reichert, M., Wombacher, A.: On Measuring Process Model Similar-
ity Based on High-Level Change Operations. In: Li, Q., Spaccapietra, S., Yu, E., Olivé,
A. (eds.) ER 2008. LNCS, vol. 5231, pp. 248–264. Springer, Heidelberg (2008)

Li et al., 2009. Li, C., Reichert, M., Wombacher, A.: Discovering Reference Models by Min-
ing Process Variants Using a Heuristic Approach. In: Dayal, U., Eder, J., Koehler, J.,
Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 344–362. Springer, Heidelberg
(2009)

Lippe and van Oosterom, 1992. Lippe, E., van Oosterom, N.: Operation-based Merging. In:
Proceedings of the 5th ACM SIGSOFT Symposium on Software Development Envi-
ronments (SDE), pp. 78–87. ACM (1992)

Mendling et al., 2006. Mendling, J., Lassen, K.B., Zdun, U.: Transformation Strategies be-
tween Block-Oriented and Graph-Oriented Process Modelling Languages. In: Proceed-
ings of Wirtschaftsinformatik 2006. Band 2, pp. 297–312. GITO-Verlag (2006)

Mendling and van der Aalst, 2007. Mendling, J., van der Aalst, W.M.P.: Formalization and
Verification of EPCs with OR-Joins Based on State and Context. In: Krogstie, J., Op-
dahl, A.L., Sindre, G. (eds.) CAiSE 2007. LNCS, vol. 4495, pp. 439–453. Springer,
Heidelberg (2007)

Mens, 2002. Mens, T.: A State-of-the-Art Survey on Software Merging. IEEE Trans. Soft-
ware Eng. 28(5), 449–462 (2002)

Mens et al., 2007. Mens, T., Taentzer, G., Runge, O.: Analysing refactoring dependencies
using graph transformation. Software and System Modeling 6(3), 269–285 (2007)

202 References

Mitra, 2005. Mitra, T.: Business-driven development. IBM developerWorks article, IBM
(2005), http://www.ibm.com/developerworks/webservices/library/ws-bdd

Murata, 1989. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of
the IEEE 77(4), 541–580 (1989)

Murta et al., 2008. Murta, L., Corrêa, C., Prudêncio, J.G., Werner, C.: Towards Odyssey-
VCS 2: Improvements over a UML-based Version Control System. In: Proceedings
of the International Workshop on Comparison and Versioning of Software Models
(CVSM), CVSM 2008, pp. 25–30. ACM, New York (2008)

Murta et al., 2007. Murta, L., Oliveira, H., Dantas, C., Lopes, L.G., Werner, C.: Odyssey-
SCM: An integrated Software Configuration Management Infrastructure for UML
Models. Sci. Comput. Program. 65, 249–274 (2007)

Myers, 1986. Myers, E.W.: An o(nd) difference algorithm and its variations. Algorithmica 1,
251–266 (1986)

Nejati et al., 2007. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S.M., Zave, P.:
Matching and Merging of Statecharts Specifications. In: Proceedings of the 29th In-
ternational Conference on Software Engineering (ICSE), pp. 54–64. IEEE Computer
Society (2007)

Nickel et al., 2000. Nickel, U.A., Niere, J., Zündorf, A.: The FUJABA Environment. In: Pro-
ceedings of the 22nd International Conference on Software Engineering (ICSE), pp.
742–745 (2000)

OMG, 2009. Object Management Group (OMG), Model Driven Architecture (2009),
http://www.omg.org/mda/

OMG, 2010c. Object Management Group (OMG), Meta Object Facility, v2.4 - Beta 2
(2010a), http://www.omg.org/spec/MOF/2.4/Beta2/

OMG, 2010b. Object Management Group (OMG), Unified Modeling Language (UML): Ac-
tivity Diagrams (2010b), http://www.omg.org/spec/UML/2.3

OMG, 2010a. Object Management Group (OMG), Unified Modeling Language (UML): Su-
perstructure (2010c), http://www.omg.org/spec/UML/2.3

OMG, 2011a. Object Management Group (OMG), Business Process Model and Notation
(BPMN) Version 2.0 (2011a), http://www.omg.org/spec/BPMN/2.0/

OMG, 2011b. Object Management Group (OMG), Meta Object Facility (MOF) 2.0
Query/View/Transformation, v1.1 (2011b), http://www.omg.org/spec/QVT/1.1/

Ohst et al., 2003. Ohst, D., Welle, M., Kelter, U.: Differences between Versions of UML
Diagrams. In: Proceedings of the 11th ACM SIGSOFT Symposium on Foundations of
Software Engineering held jointly with 9th European Software Engineering Conference
(ESEC/FSE), pp. 227–236. ACM (2003)

OASIS, 2007. Organization for the Advancement of Structured Information Standards (OA-
SIS), Web Services Business Process Execution Language (WS-BPEL) Version 2.0
(2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

Pedersen et al., 2004. Pedersen, T., Patwardhan, S., Michelizzi, J.: WordNet: Similarity -
Measuring the Relatedness of Concepts. In: McGuinness, D.L., Ferguson, G. (eds.)
Proceedings of the 9th National Conference on Artificial Intelligence and 16th Con-
ference on Innovative Applications of Artificial Intelligence (AAAI), pp. 1024–1025.
AAAI Press / The MIT Press (2004)

Pottinger and Bernstein, 2003. Pottinger, R., Bernstein, P.A.: Merging Models Based on
Given Correspondences. In: Proceedings of the 29th International Conference on Very
Large Data Bases (VLDB), vol. 29, pp. 826–873 (2003)

Reddy and France, 2005. Reddy, R., France, R.: Model Composition - A Signature-Based
Approach. In: Proceedings of the Aspect Oriented Modeling Workshop (AOM) (2005)

http://www.ibm.com/developerworks/webservices/library/ws-bdd
http://www.omg.org/mda/
http://www.omg.org/spec/MOF/2.4/Beta2/
http://www.omg.org/spec/UML/2.3
http://www.omg.org/spec/UML/2.3
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/QVT/1.1/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

References 203

Reichert and Dadam, 1998. Reichert, M., Dadam, P.: ADEPTflex-Supporting Dynamic
Changes of Workflows Without Losing Control. J. Intell. Inf. Syst. 10(2), 93–129
(1998)

Reichert and Dadam, 2009. Reichert, M., Dadam, P.: Enabling Adaptive Process-aware In-
formation Systems with ADEPT2. In: Cardoso, J., van der Aalst, W. (eds.) Handbook of
Research on Business Process Modeling, pp. 173–203. Information Science Reference,
Hershey (2009)

Reichert et al., 2003. Reichert, M., Rinderle, S., Dadam, P.: ADEPT Workflow Management
System: In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003.
LNCS, vol. 2678, pp. 370–379. Springer, Heidelberg (2003)

Reichert et al., 2005. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive Process
Management with ADEPT2. In: Proceedings of the 21st International Conference on
Data Engineering (ICDE), pp. 1113–1114. IEEE Computer Society (2005)

Rinderle et al., 2007. Rinderle, S., Jurisch, M., Reichert, M.: On deriving net change infor-
mation from change logs - the deltalayer-algorithm. In: Kemper, A., Schöning, H.,
Rose, T., Jarke, M., Seidl, T., Quix, C., Brochhaus, C. (eds.) Proceedings of Daten-
banksysteme in Business, Technologie und Web (BTW), vol. 103, pp. 364–381. GI
(2007)

Rinderle et al., 2004. Rinderle, S., Reichert, M., Dadam, P.: Disjoint and Overlapping Pro-
cess Changes: Challenges, Solutions, Applications. In: Meersman, R. (ed.) OTM 2004.
LNCS, vol. 3290, pp. 101–120. Springer, Heidelberg (2004)

Rinderle et al., 2006. Rinderle, S., Reichert, M., Jurisch, M., Kreher, U.: On Representing,
Purging, and Utilizing Change Logs in Process Management Systems. In: [Dustdar et
al., 2006], pp. 241–256 (2006)

Rivera and Vallecillo, 2008. Rivera, J.E., Vallecillo, A.: Representing and operating with
model differences. In: Paige, R.F., Meyer, B. (eds.) Proceedings of the 46th Interna-
tional Conference on Objects, Components, Models and Patterns TOOLS EUROPE
2008. LNBIP, vol. 11, pp. 141–160. Springer, Heidelberg (2008)

Rosa et al., 2010. La Rosa, M., Dumas, M., Uba, R., Dijkman, R.: Merging Business Process
Models. In: Meersman, R., Dillon, T.S., Herrero, P. (eds.) OTM 2010, Part I, LNCS,
vol. 6426, pp. 96–113. Springer, Heidelberg (2010)

Rumbaugh et al., 1991. Rumbaugh, J.E., Blaha, M.R., Premerlani, W.J., Eddy, F., Lorensen,
W.E.: Object-Oriented Modeling and Design. Prentice-Hall (1991)

Sadiq and Orlowska, 2000. Sadiq, W., Orlowska, M.E.: Analyzing Process Models Using
Graph Reduction Techniques. Inf. Syst. 25(2), 117–134 (2000)

Schneider and Zündorf, 2007. Schneider, C., Zündorf, A.: Experiences in using Optimisitic
Locking in Fujaba. Softwaretechnik Trends 27 (2007)

Schneider et al., 2004. Schneider, C., Zündorf, A., Niere, J.: CoObRA - a small step for de-
velopment tools to collaborative environments. In: Proceedings of the Workshop on
Directions in Software Engineering Environments (WoDiSEE). ICSE 2004, Scotland
(2004)

Steinberg et al., 2009. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse
Modeling Framework 2.0, 2nd edn. Addison-Wesley Professional (2009)

Subversion, 2011. Subversion (2011), Subversion - Open Source Revision Control System,
http://subversion.tigris.org

Taentzer, 2003. Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and
Validation of Software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003.
LNCS, vol. 3062, pp. 446–453. Springer, Heidelberg (2004)

http://subversion.tigris.org

204 References

Taentzer et al., 2010. Taentzer, G., Ermel, C., Langer, P., Wimmer, M.: Conflict Detection for
Model Versioning Based on Graph Modifications. In: Ehrig, H., Rensink, A., Rozen-
berg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 171–186. Springer, Hei-
delberg (2010)

Taylor, 1911. Taylor, F.W.: The Principles of Scientific Management. History of Economic
Thought Books. McMaster University Archive for the History of Economic Thought
(1911)

Treude et al., 2007. Treude, C., Berlik, S., Wenzel, S., Kelter, U.: Difference Computation
of Large Models. In: Proceedings of the 8th ACM SIGSOFT Symposium on Founda-
tions of Software Engineering Held Jointly with 6th European Software Engineering
Conference (ESEC/FSE), pp. 295–304. ACM (2007)

v. Glabbeek, 1988. van Glabbeek, R.: The Linear Time-Branching Time Spectrum I - The
Semantics of Concrete, Sequential Processes. In: Handbook of Process Algebra, ch. 1,
pp. 3–99. Elsevier (1988)

van der Aalst et al., 2006. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.:
Process Equivalence: Comparing Two Process Models Based on Observed Behavior.
In: [Dustdar et al., 2006], pp. 129–144 (2006)

van der Aalst et al., 2002. van der Aalst, W.M.P., Hirnschall, A., Verbeek, H.M.W.: An Al-
ternative Way to Analyze Workflow Graphs. In: Pidduck, A.B., Mylopoulos, J., Woo,
C.C., Ozsu, M.T. (eds.) CAiSE 2002. LNCS, vol. 2348, pp. 535–552. Springer, Heidel-
berg (2002)

van der Aalst et al., 2005. van der Aalst, W.M.P., ter Hofstede, A.H.M.: Yawl: yet another
workflow language. Inf. Syst. 30(4), 245–275 (2005)

van Dongen et al., 2008. van Dongen, B.F., Dijkman, R.M., Mendling, J.: Measuring Simi-
larity between Business Process Models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE
2008. LNCS, vol. 5074, pp. 450–464. Springer, Heidelberg (2008)

van Dongen et al., 2005. van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.: Verifi-
cation of EPCs: Using Reduction Rules and Petri Nets. In: Pastor, Ó., Falcão e Cunha,
J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 372–386. Springer, Heidelberg (2005)

Vanhatalo et al., 2007. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and More Focused
Control-Flow Analysis for Business Process Models Through SESE Decomposition.
In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp.
43–55. Springer, Heidelberg (2007)

Vanhatalo et al., 2008. Vanhatalo, J., Völzer, H., Leymann, F., Moser, S.: Automatic Work-
flow Graph Refactoring and Completion. In: Bouguettaya, A., Krueger, I., Margaria, T.
(eds.) ICSOC 2008. LNCS, vol. 5364, pp. 100–115. Springer, Heidelberg (2008)

Wahler, 2009. Wahler, K.: A Framework for Integrated Process and Object Life Cycle Mod-
eling. PhD thesis, University of Zurich, Switzerland (2009)

Weber et al., 2007. Weber, B., Rinderle, S., Reichert, M.: Change Patterns and Change Sup-
port Features in Process-Aware Information Systems. In: Krogstie, J., Opdahl, A.L.,
Sindre, G. (eds.) CAiSE 2007. LNCS, vol. 4495, pp. 574–588. Springer, Heidelberg
(2007)

Weidlich et al., 2010. Weidlich, M., Dijkman, R., Mendling, J.: The ICoP Framework: Iden-
tification of Correspondences between Process Models. In: Pernici, B. (ed.) CAiSE
2010. LNCS, vol. 6051, pp. 483–498. Springer, Heidelberg (2010)

Weidlich et al., 2011. Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measure-
ment based on behavioral profiles of process models. IEEE Transactions on Software
Engineering 37, 410–429 (2011)

References 205

Weidlich et al., 2009. Weidlich, M., Weske, M., Mendling, J.: Change Propagation in Pro-
cess Models Using Behavioural Profiles. In: Proceedings of the IEEE International
Conference on Services Computing (SCC), pp. 33–40. IEEE Computer Society (2009)

Westfechtel, 2010. Westfechtel, B.: A formal approach to three-way merging of emf models.
In: Proceedings of the 1st International Workshop on Model Comparison in Practice
(IWMCP), pp. 31–41. ACM (2010)

Wombacher and Li, 2010. Wombacher, A., Li, C.: Alternative Approaches for Workflow
Similarity. In: Proceedings of the 7th IEEE International Conference on Services Com-
puting (SCC), pp. 337–345. IEEE Computer Society (2010)

WFMC, 2005. Workflow Management Coalition Workflow Standard (WFMC), Process Def-
inition Interface – XML Process Definition Language. Technical Report WFMC-TC-
1025, Workflow Management Coalition (2005)

Xing and Stroulia, 2005. Xing, Z., Stroulia, E.: UMLDiff: An Algorithm for Object-
Oriented Design Differencing. In: Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 54–65. ACM (2005)

Zimmermann et al., 2003. Zimmermann, O., Tomlinson, M.R., Peuser, S.: Perspectives on
Web Services: Applying SOAP, WSDL and UDDI to Real-World Projects (Springer
Professional Computing). Springer (2003)

A

Evaluation Case Study

As an initial evaluation, we provide a case study that compares an approach to pro-
cess model change management based on elementary change operations with our
approach using compound change operations. In particular, we evaluate the effects
of the change operations granularity on the detection of differences and the identifi-
cation of dependencies and conflicts between change operations.

In the remainder, we first settle the scenario of our case study and introduce a
set of elementary change operations together with configurations of the operations
that lead to sequential dependencies and conflicts in Section A.1. Then, we use
the set of elementary change operations to express the differences of our example.
Finally, we compare the required user interventions in terms of work units to re-
solve selected differences, dependencies, and conflicts in a realistic example using
compound change operations and elementary change operations.

A.1 Scenario of the Case Study

In our case study, we evaluate the impact of the change operation granularity on
the computation of dependencies and conflicts between change operations and their
consequences on the usability of a solution for process model change management.
As an example, we use the process model versions presented in Figure A.1. These
process model versions describe the handling of a claim in an insurance company.
The source process model V was initially created and then stepwise refined by two
different users into the versions V1 and V2. These two descendant version shall
be merged with respect to their common source version V into an integrated ver-
sion VM .

To compare the suitability of different change operation granularities for process
model change management, we compute differences between the process model
versions shown in Figure A.1 in terms of elementary change operations and in terms
of compound change operations.

As introduced in Section 5.3 in Chapter 5, the set of compound change
operations consists of the following operations: InsertActivity,DeleteActivity,

208 A Evaluation Case Study

X XCheck
Claim

Record
Claim

Settle
Claim

Reject
Claim

V
Source
Model

X XRecord
Claim

Settle
Claim

Reject
Claim

X X

Check
Claim

Retrieve
add. Data

+
+

+
Send

Confirmation

Pay Out

Calculate
Loss Amount

Recalculate
Customer

Contribution

V1

V2

Editing Operations (V,V2)

Editing Operations (V,V1)

Call
Customer

Send
Rejection
Letter

Close
Claim

+

X X

X XRecord
Claim

Settle
Claim

Reject
Claim

Check
Claim

+
+

+

Send
Confirmation

Pay Out

Calculate
Loss Amount

Recalculate
Customer

Contribution

Send
Rejection
Letter

Update
Customer
Record

+

+ +
Close
Claim

fA-V

fA2-V1

fLoop-V1

fA-V1

fA-V2

fP2-V1fP-V1

fP2-V2

fP-V2

fP3-V2

Fig. A.1 Process Model Versions used in the Case Study

MoveActivity, InsertFragment, DeleteFragment, MoveFragment, and Convert-
Fragment. Figure A.2 shows the change logs ΔCompound(V,V1) and ΔCompound(V,V2)
that represent the difference between the process models in Figure A.1 in terms of
compound change operations.

Compound(V, V1):
101.InsertCyclicFragment(V, fLoopV1, “Record Claim”, XOR-SplitfAV1)

102.MoveActivity(V, “Check Claim”, Start, “Record Claim”,

XOR-JoinfLoop, XOR-SplitfLoop)

103.InsertActivity(V, “Ret. add. Data”, XOR-Split2fLoop, XOR-Join2
fLoop)

104.InsertCon.Fragment(V, fPV1, “Settle Claim”, XOR-Join1
fAV1)

105.InsertActivity(V, “Send Confirmation”, XOR-Split2fPV1, XOR-Join2
fPV1)

106.InsertActivity(V, “Pay Out”, AND-Split1fPV1, AND-Join1
fPV1)

107.InsertCon.Fragment(V, fP2V1, AND-Split1fPV1, “Pay Out”)

108.InsertActivity(V, “Calc. Loss Amount”, AND-Split1fP2V1, AND-Join1
fP2V1)

109.InsertActivity(V, “Recalc. Cust. Contrib.”, AND-Split2fP2V1, AND-Join2
fP2V1)

110.InsertAlt.Fragment(V, fA2V1, “Reject Claim”, “Close Claim”)

111.DeleteActivity(V, “Close Claim”, XOR-JoinfA2V1, XOR-Join2
fAV1)

112.InsertActivity(V, “Call Customer”, XOR-Split1fA2V1, XOR-Join1
fA2V1)

113.InsertActivity(V, “Send Rej. Letter.”, XOR-Split2fA2V1, XOR-Join2
fA2V1)

Compound(V, V2):
201.MoveActivity(V, “Check Claim”, Start, “Record Claim”,

“Record Claim”, XOR-SplitfAV2)

202.InsertCon.Fragment(V, fPV2, “Settle Claim”, XOR-Join1
fAV2)

203.InsertActivity(V, “Send Confirmation”, AND-Split1fPV2, AND-Join1
fPV2)

204.InsertCon.Fragment(V, fP2V2, AND-Split2fpV2, AND-Join2
fPV2)

205.InsertActivity(V, “Calc. Loss Amount”, AND-Split1fP2V2, AND-Join1
fP2V2)

206.InsertActivity(V, “Recalc. Cust. Contrib.”, AND-Split2fP2V2, AND-Join2
fP2V2)

207.InsertActivity(V, “Pay Out”, AND-JoinfP2V2, AND-Join2
fPV2)

208.InsertCon.Fragment(V, fP3V2, “Reject Claim”, “Close Claim”)

209.InsertActivity(V, “Update Cust. Record”, AND-Split1fP3V2, AND-Join1
fP3V2)

210.InsertActivity(V, “Send Rej. Letter”, AND-Split2fP3V2, AND-Join2
fP3V2)

Fig. A.2 Compound Change Operations of our Example

The set of elementary change operations consists of the following four opera-
tions, as introduced in Section 5.2 in Chapter 5: InsertNode,DeleteNode, Insert-
Edge, and DeleteEdge. Using elementary change operations to express the

A.1 Scenario of the Case Study 209

differences between the process models V , V1, and V2 of our example (Figure 1.3)
results in the change logs ΔElementary(V,V1) and ΔElementary(V,V2) given in Figure A.3.

Elementary(V, V1):
101. DeleteEdge(V, e1, “Start”, “Check Claim”)

102. DeleteEdge(V, e2, “Check Claim”, “Record Claim”)

103. InsertEdge(V, e10, “InitialNode”, “Record Claim”)

104. InsertNode(V, “XOR-JoinfLoopV1”)

105. InsertNode(V, “XOR-SplitfLoopV1”)

106. InsertNode(V, “Retrieve Add. Data”)

107. InsertEdge(V, e11, “XOR-JoinfLoopV1”, “Check Claim”)

108. InsertEdge(V, e12, “Check Claim”, “XOR-SplitfLoopV1”)

109. InsertEdge(V, e13, “XOR-SplitfLoopV1”, “Retr. Add. Data”)

110. InsertEdge(V, e14, “Retr. Add. Data”, “XOR-JoinfLoopV1”)

111. DeleteEdge(V, e3, “Record Claim”, “XOR-SplitfAV1”)

112. InsertEdge(V, e15, “Record Claim”, “XOR-JoinfLoopV1”)

113. InsertEdge(V, e16, “XOR-SplitfLoopV1”, “XOR-SplitfAV1”)

114. InsertNode(V, “AND-SplitfPV1”)

115. InsertNode(V, “AND-SplitfP2V1”)

116. InsertNode(V, “AND-JoinfPV1”)

117. InsertNode(V, “AND-JoinfPV2”)

118. InsertNode(V, “Calculate Loss Amount”)

119. InsertNode(V, “Recalc. Cust. Contrib.”)

120. InsertNode(V, “Send Confirmation”)

121. InsertNode(V, “Pay Out”)

122. DeleteEdge(V, e5, “Settle Claim”, “XOR-JoinfAV1”)

123. InsertEdge(V, e17, “Settle Claim”, “AND-SplitfPV1”)

124. InsertEdge(V, e18, “AND-SplitfPV1”, “AND-SplitfP2V1”)

125. InsertEdge(V, e19, “AND-SplitfPV1”, “Send Confirmation”)

126. InsertEdge(V, e20, “AND-SplitfP2V1”, “Calculate Loss Amount”)

127. InsertEdge(V, e21, “AND-SplitfP2V1”, “Recalc. Cust. Contrib.”)

128. InsertEdge(V, e22, “Calculate Loss Amount”, “AND-JoinfP2V1”)

129. InsertEdge(V, e23, “Recalc. Cust. Contrib.”, “AND-JoinfP2V1”)

130. InsertEdge(V, e24, “AND-JoinfP2V1”, “Pay Out”)

131. InsertEdge(V, e25, “Pay Out”, “AND-JoinfPV1”)

132. InsertEdge(V, e26, “AND-JoinfPV1”, “XOR-JoinfAV1”)

133. InsertEdge(V, e27, “Send Confirmation”, “AND-JoinfPV1”)

134. InsertNode(V, “XOR-SplitfA2V1”)
135. InsertNode(V, “XOR-JoinfA2V1”)
136. InsertNode(V, “Call Customer”)
137. InsertNode(V, “Send Rej. Letter”)
138. DeleteEdge(V, e7, “Reject Claim”, “Close Claim”)
139. DeleteEdge(V, e8, “Close Claim”, “XOR-JoinfAV1”)
140. InsertEdge(V, e28, “XOR-JoinfA2V1”, “XOR-JoinfAV1”) (135,139)
141. DeleteNode(V, “Close Claim”) (138, 139)
142. InsertEdge(V, e29, “Reject Claim”, “XOR-SplitfA2V1”) (134, 138)
143. InsertEdge(V, e30, “XOR-SplitfA2V1”, “Call Customer”) (134, 136)
144. InsertEdge(V, e31, “XOR-SplitfA2V1”, “Send Rej. Letter”) (134, 137)
145. InsertEdge(V, e32, “Call Customer”, “XOR-JoinfA2V1”) (135, 136)
146. InsertEdge(V, e33, “Send Rej. Letter”, “XOR-JoinfA2V1”) (135, 137)

Elementary(V, V2):
201. DeleteEdge(V, e2, “Check Claim”, “Record Claim”)

202. DeleteEdge(V, e1, “Start”, “Check Claim”)

203. InsertEdge(V, e10, “Start”, “Record Claim”)

204. DeleteEdge(V, e3, “Record Claim”, “XOR-Split”)

205. InsertEdge(V, e11, “Check Claim”, “XOR-Split”)

206. InsertEdge(V, e12, “Record Claim”, “Check Claim”)

207. InsertNode(V, “AND-SplitfPV2”)

208. InsertNode(V, “AND-SplitfP2V2”)

209. InsertNode(V, “AND-JoinfPV2”)

210. InsertNode(V, “AND-JoinfP2V2”)

211. InsertNode(V, “Calculate Loss Amount”)

212. InsertNode(V, “Recalc. Cust. Contrib.”)

213. InsertNode(V, “Send Confirmation”)

214. InsertNode(V, “Pay Out”)

215. DeleteEdge(V, e5, “Settle Claim”, “XOR-JoinfPV2”)

216. InsertEdge(V, e13, “Settle Claim”, “AND-SplitfPV2”)

217. InsertEdge(V, e14, “AND-SplitfPV2”, “AND-SplitfP2V2”)

218. InsertEdge(V, e15, “AND-SplitfPV2”, “Send Confirmation”)

219. InsertEdge(V, e16, “AND-SplitfP2V2”, “Calculate Loss Amount”)

220. InsertEdge(V, e17, “AND-SplitfP2V2”, “Recalc. Cust. Contrib.”)

221. InsertEdge(V, e18, “Calculate Loss Amount”, “AND-JoinfP2V2”)

222. InsertEdge(V, e19, “Recalc. Cust. Contrib.”, “AND-JoinfP2V2”)

223. InsertEdge(V, e20, “AND-JoinfP2V2”, “Pay Out”)

224. InsertEdge(V, e21, “Pay Out”, “AND-JoinfPV2”)

225. InsertEdge(V, e22, “AND-JoinfPV2”, “XOR-JoinfAV2”)

226. InsertEdge(V, e23, “Send Confirmation”, “AND-JoinfPV2”)

227. InsertNode(V, “AND-SplitfP3V2”)
228. InsertNode(V, “AND-JoinfP3V2”)
229. InsertNode(V, “Update Cust. Record”)
230. InsertNode(V, “Send Rej. Letter”)
231. DeleteEdge(V, e7, “Reject Claim”, “Close Claim”)
232. InsertEdge(V, e24, “Reject Claim”, “AND-SplitfP3V2”) (227, 231)
233. InsertEdge(V, e25, “AND-SplitfP3V2”, “Update Cust. Record”) (227, 229)
234. InsertEdge(V, e26, “AND-SplitfP3V2”, “Send Rej. Letter”) (227, 230)
235. InsertEdge(V, e27, “Update Cust. Record”, “AND-JoinfP3V2”) (228, 229)
236. InsertEdge(V, e28, “Send Rej. Letter”, “AND-JoinfP3V2”) (228, 230)
237. InsertEdge(V, e29, “AND-JoinfP3V2”, “Close Claim”) (228, 231)

conflicting

elementary

operations

Fig. A.3 Elementary Change Operations of our Example with Dependencies and Conflicts
for selected Operations

For each set of change operations, we compute dependencies and conflicts. In the
case of compound change operations, we compute dependencies as introduced in
Chapter 7 and conflicts by applying the approach presented in Chapter 9. In the case
of elementary change operations, we present respective dependency and conflict
matrices in the following.

Analogously to our set of compound change operations (see Chapter 7), we have
formulated the elementary change operations in terms of graph transformation rules
and have computed sequential dependencies and conflicts. Figure A.4 shows all con-
figurations of elementary operations that lead to sequential dependencies. In general,
two operations sequentially depend on each other if the application of one operation
requires that the other one is applied before. For instance, there is a sequential de-
pendency between InsertNode(V, n) and InsertEdge(V, e, s, t) if either the source s
of the edge e is the newly inserted node n (s = n) or the target t of the edge e is
the newly inserted node (t = n). The result of this dependency is that n needs to be
inserted before the insertion of the edge e can be applied.

210 A Evaluation Case Study

InsertNode(V,b) DeleteNode(V,b) InsertEdge
(V,e2,v,w)

DeleteEdge
(V,e2,v,w)

Insert
Node(V,a)

[IN(a), IN(b)]: [IN(a), DN(b)]: [IN(a), IE(e2)]:
v = a | w = a

[IN(a), DE(e2)]:

Delete
Node(V,a)

[DN(a), IN(b)]: [DN(a), DN(b)]: [DN(a), IE(e2)]: [DN(a), DE(e2)]:

InsertEdge
(V,e1,x,y)

[IE(e1), IN(b)]: [IE(e1), DN(b)]: [IE(e1), IE(e2)]: [IE(e1), DE(e2)]:

DeleteEdge
(V,e1,x,y)

[DE(e1), IN(b)]: [DE(e1), DN(X2)]:
b = x | b = y

[DE(e1), IE(e2)]:
v = x | w = y

[DE(e1), DE(e2)]:

Fig. A.4 Transformation Dependencies of Elementary Change Operations

Conflicts between elementary change operations, which can occur in three-way
merge scenarios, are shown in Figure A.5. In general, two elementary change opera-
tions are conflicting if the application of one operation turns the other one inapplica-
ble. Analogously to the syntax-based computation of conflicts between compound
change operations, we determined critical pairs between two rule sets of elementary
change operations and encoded conflicting situations in terms of change operation
parameters. To give an example, two independently applied elementary change op-
erations DeleteNode(V, n) and DeleteNode(V,m) are in conflict if n = m. In this
case, the application of one of the operation turns the other one inapplicable.

InsertNode(V,b) DeleteNode(V,b) InsertEdge
(V,e2,v,w)

DeleteEdge
(V,e2,v,w)

Insert
Node(V,a)

Delete
Node(V,a)

b = a v = a | w = a

InsertEdge
(V,e1,x,y)

b = x | b = y (v = x & w y) |
(v x & w = y)

DeleteEdge
(V,e1,x,y)

e2 = e1

Fig. A.5 Conflicts between Elementary Change Operations

Dependencies and conflicts for selected change operations are visualized in
Figure A.3. Dependencies are indicated directly behind the elementary operations,
e.g. the application of Operation 143 requires that Operations 133 and 135 were ap-
plied earlier. Conflicts are represented by black arrows connecting operations in the

A.2 Difference and Conflict Resolution Using Compound Change Operations 211

change logs. For instance, the two DeleteEdge Operations 138 and 231 are in con-
flict, because they delete the same link (L2 = L1).

Figure A.6 visualizes a merged process model VM that can be obtained by apply-
ing a combination of operations contained in the change logs Δ(V,V1) and Δ(V,V2)
on the source process V . Changes to the original source process model V (introduced
in Figure 1.3) are highlighted.

X XCheck
Claim

Settle
Claim

Reject
Claim

Record
ClaimVM Call

Customer

Send
Rejection
Letter

Update
Customer
Record

Close
Claim

fA-VM

fP3-VM

+ +

Fig. A.6 Merged Process Model

In the following two subsections, we measure the required user intervention to
obtain the merged process model VM. Along the change application, we measure the
required user interventions in terms of work units for the inspection of conflicts and
the application of change operations. For simplicity, we assume that each inspection
and application of an operation, dependency or conflict requires one work unit. In
Section A.2, we merge V1 and V2 into VM using compound change operations. In
Section A.3, VM is created by applying elementary change operations.

A.2 Difference and Conflict Resolution Using Compound
Change Operations

The compound change operations, which need to be applied on the source pro-
cess model V in order to create the merged process model VM, are represented in
Figure A.7.

Case Study: Difference and Conflict Resolution using
Compound Change Operations

Work
Units

Step 1 Inspect conflict between the insertions of the

fragments fA2V1 and fP3V2

1

Step 2 Resolve conflict through unification 1

Step 2 Inspect conflict between “Call Customer” and

“Update Customer Record”

1

Step 3 Resolve conflict by applying both operations 2

Step 3 Inspect remaining operations that both insert

“Send Rej. Letter”

1

Step 4 Apply only right hand operation 1

7

Fig. A.8 Required User Intervention using Compound
Change Operations

In Step 1 the conflict be-
tween the insertions of the two
fragments fA2V1 and fP3V2 is
inspected (one work unit). We
assume that a user decides to
resolve the conflict by a unifi-
cation of the compound change
operations and inserts the frag-
ment fP3V2 in the source pro-
cess model VM and naming it
fP3V M (done in Step 2, one
work unit). Thereby, the posi-
tion parameters of the remain-
ing operations 111-113 and
209-210 in the change logs are

212 A Evaluation Case Study

Compound(V, V2):
208.InsertCon.Fragment(V, fP3V2, “Reject Claim”, “Close Claim”)
209.InsertActivity(V, “Update Cust. Record”, AND-Split1fP3V2, AND-Join1

fP3V2)

210.InsertActivity(V, “Send Rej. Letter”, AND-Split2fP3V2, AND-Join2
fP3V2)

Compound(V, V1):
110.InsertAlt.Fragment(V, fA2V1, “Reject Claim”, “Close Claim”)
111.DeleteActivity(V, “Close Claim”, XOR-JoinfA2V1, XOR-Join2

fAVM)

112.InsertActivity(V, “Call Customer”, XOR-Split1fA2V1, XOR-Join1
fA2V1)

113.InsertActivity(V, “Send. Rej. Letter”, XOR-Split2fA2V1, XOR-Join2
fA2V1)

208.InsertCon.Fragment(V, fP3V2, “Reject Claim”, “Close Claim”)
209.InsertActivity(V, “Update Cust. Record”, AND-Split1

fP3VM, AND-Join1
fP3VM)

210.InsertActivity(V, “Send Rej. Letter”, AND-Split2fP3VM, AND-Join2
fP3VM)

110.InsertAlt.Fragment(V, fA2V1, “Reject Claim”, “Close Claim”)
111.DeleteActivity(V, “Close Claim”, AND-JoinfP3VM, XOR-Join2

fAVM)
112.InsertActivity(V, “Call Customer”, AND-Split1

fP3VM, AND-Join1
fP3VM)

113.InsertActivity(V, “Send. Rej. Letter”, AND-Split2fP3VM, AND-Join2
fP3VM)

unified (fA2V1)

208.InsertCon.Fragment(V, fP3V2, “Reject Claim”, “Close Claim”)
209.InsertActivity(V, “Update Cust. Reord”, AND-Split1

fP3VM, AND-Join1
fP3VM)

210.InsertActivity(V, “Send Rej. Letter”, AND-Split2fP3VM, AND-Join2
fP3VM)

110.InsertAlt.Fragment(V, fA2V1, “Reject Claim”, “Close Claim”)
111.DeleteActivity(V, “Close Claim”, AND-JoinfP3VM, XOR-Join2

fAVM)
112.InsertActivity(V, “Call Customer”, AND-Split1

fP3VM, AND-Join1
fP3VM),

113.InsertActivity(V, “Send. Rej. Letter”, AND-Split2fP3VM, AND-Join2
fP3VM)

unified (fA2V1)

208.InsertCon.Fragment(V, fP3V2, “Reject Claim”, “Close Claim”)
209.InsertActivity(V, “Update Cust. Record”, AND-Split1

fP3VM, AND-Join1
fP3VM

210.InsertActivity(V, “Send Rej. Letter”, AND-Split2
fP3VM , AND-Join2

fP3VM)

110.InsertAlt.Fragment(V, fA2V1, “Reject Claim”, “Close Claim”)
111.DeleteActivity(V, “Close Claim”, AND-JoinfP3VM, XOR-Join2

fAVM)
112.InsertActivity(V, “Call Customer”, AND-Split1

fP3VM, AND-Join1
fP3VM)

113.InsertActivity(V, “Send. Rej. Letter”, AND-Split2fP3VM, AND-Join2
fP3VM)

unified (fA2V1)

Step 1

Step 2

Step 3

Step 4

Fig. A.7 Process Merging using Compound Change Operations

adapted to reflect the entry (AND-Split) and exit (AND-Join) of fragment fP3V M .
Further, the conflict between the insertions of “Call Customer” and “Update Cus-
tomer Record” is inspected and it is decided to apply both operations in Step 3. The
inspection and the application of both operations increases the work unit counter by
three.

Finally, the remaining operations 113 and 210 are inspected that both insert the
Activity “Send Rej. Letter” (one work unit) and only the right hand operation 210
is applied (one work unit). In total a user intervention of seven work units were
necessary to obtain the merged process model VM.

A.3 Difference and Conflict Resolution Using Elementary
Change Operations

In contrast to compound change operations, a conflict-driven approach for the reso-
lution of differences using elementary change operations is not applicable at once.
Since most of the conflicting elementary operations, e.g. all InsertEdge operations,
require other operations to be applied before. However, we suggest an element-
driven approach for elementary change operations that starts with the decision,
which elements shall be inserted or deleted.

Figure A.10 visualizes the parts of the elementary change logs that need to
be considered in order to create the merged process model VM. We start with an
inspection of all InsertNode and DeleteNode operations in Step 1 (resulting in nine
work units). Then in Step 2, we insert the five required elements (five work units).

A.4 Summary and Discussion 213

Afterwards, the remaining link operations need to be inspected in order to identify
the operations that are applicable with respect to the inserted and deleted elements.
Since this step is straight-forward computation, we assume that applicable link op-
erations are determined automatically and produces no costs.

Case Study: Difference and Conflict Resolution using
Elementary Change Operations, Insert-/DeleteNode-Driven

Work
Units

Step 1 Inspect all Insert- and DeleteNode operations 9

Step 2 Apply five InsertNode operations (AND-Split, AND-

Join, Call Customer, Send Rej. Letter, Update Cust.

Record)

5

Inspect Insert/DeleteEdge operations (edge operations

that become inapplicable due to in Step 2 applied node

insertions can be computed – inspections are not

counted)

(15)

Step 3 Apply edge operations 138, 232, 234-237 6

Step 4 Manually connect the process model with five edges 2

22

Fig. A.9 Required User Intervention using Elementary
Change Operations

In Step 3, the applicable link
operations are applied. In our
example, these are the Oper-
ations 138, 232, and 234 -
237, increasing the work unit
counter by six. Finally, the pro-
cess model needs to be con-
nected manually in Step 4,
since not all elements are con-
nected so far. That means, a
user has to insert two edges
by hand in order to com-
plete the concurrent structure
in the merged process model
VM. Overall, by using elemen-
tary change operations a user has to perform 22 work units to merge the process
model versions V1 and V2 into VM .

A.4 Summary and Discussion

In our evaluation, we have shown that an approach based on compound change
operations leads to less conflicts and dependencies than an approach relying on ele-
mentary change operations, illustrated in Table A.11 for our example introduced in
Figure A.1.

Another goal was to show that our approach also leads to less required user in-
tervention than an approach based on elementary operations. We can distinguish
between the application of operations, conflict examination and conflict resolution.
On average, the number of elementary change operations is three times the number
of compound change operations, which makes the resolution of differences to merge
models more complex. For the application of operations, the user intervention triples
(unless further optimizations are implemented for the elementary operations).

The relation of conflicts for the elementary and compound operations cannot be
estimated, since it depends completely on the underlying models. In our running
example, we obtain the number of conflicts as indicated in the Figure A.11.

In general, the user interventions required for conflict resolution depends on the
support given by the modeling tool. However, our example shows that computed de-
pendencies and conflicts between elementary change operations do not really help a
user to merge different versions of a process model. Firstly, dependencies between
related elementary change operations are not always given. For instance, the infor-
mation, which pair of gateways form a fragment and need to be inserted or deleted

214 A Evaluation Case Study

Elementary(V, V1):
…
134. InsertNode(V, “XOR-SplitfA2V1”)

135. InsertNode(V, “XOR-JoinfA2V1”)

136. InsertNode(V, “Call Customer”)

137. InsertNode(V, “Send Rejection Letter”)

138. DeleteEdge(V, e7, “Reject Claim”, “Close Claim”)

139. DeleteEdge(V, e8, “Close Claim”, “XOR-JoinfAV1”)

140. InsertEdge(V, e28, “XOR-JoinfA2V1”, “XOR-JoinfAV1”) (135,139)
141. DeleteNode(V, “Close Claim”) (138, 139)
142. InsertEdge(V, e29, “Reject Claim”, “XOR-SplitfA2V1”) (134, 138)
143. InsertEdge(V, e30, “XOR-SplitfA2V1”, “Call Customer”) (134, 136)
144. InsertEdge(V, e31, “XOR-SplitfA2V1”, “Send Rej. Letter”) (134, 137)
145. InsertEdge(V, e32, “Call Customer”, “XOR-JoinfA2V1”) (135, 136)
146. InsertEdge(V, e33, “Send Rej. Letter”, “XOR-JoinfA2V1”) (135, 137)

Elementary(V, V2):
…
227. InsertNode(V, “AND-SplitfP3V2”)

228. InsertNode(V, “AND-JoinfP3V2”)

229. InsertNode(V, “Update Cust. Record”)

230. InsertNode(V, “Send Rejection Letter”)

231. DeleteEdge(V, e7, “Reject Claim”, “Close Claim”)

232. InsertEdge(V, e24, “Reject Claim”, “AND-SplitfP3V2”) (227, 231)
233. InsertEdge(V, e25, “AND-SplitfP3V2”, “Update Cust. Record”) (227, 229)
234. InsertEdge(V, e26, “AND-SplitfP3V2”, “Send Rej. Letter”) (227, 230)
235. InsertEdge(V, e27, “Update Cust. Record”, “AND-JoinfP3V2”) (228, 229)
236. InsertEdge(V, e28, “Send Rej. Letter”, “AND-JoinfP3V2”) (228, 230)
237. InsertEdge(V, e29, “AND-JoinfP3V2”, “Close Claim”) (228, 231)

conflicting
elementary
operations

…
134. InsertNode(V, “XOR-SplitfA2V1”)
135. InsertNode(V, “XOR-JoinfA2V1”)
136. InsertNode(V, “Call Customer”)
137. InsertNode(V, “Send Rejection Letter”)

138. DeleteEdge(V, e7, “Reject Claim”, “Close Claim”)

139. DeleteEdge(V, e8, “Close Claim”, “XOR-JoinfAV1”)

140. InsertEdge(V, e28, “XOR-JoinfA2V1”, “XOR-JoinfAV1”) (135,139)
141. DeleteNode(V, “Close Claim”) (138, 139)
142. InsertEdge(V, e29, “Reject Claim”, “XOR-SplitfA2V1”) (134, 138)
143. InsertEdge(V, e30, “XOR-SplitfA2V1”, “Call Customer”) (134, 136)
144. InsertEdge(V, e31, “XOR-SplitfA2V1”, “Send Rej. Letter”) (134, 137)
145. InsertEdge(V, e32, “Call Customer”, “XOR-JoinfA2V1”) (135, 136)
146. InsertEdge(V, e33, “Send Rej. Letter”, “XOR-JoinfA2V1”) (135, 137)

…
227. InsertNode(V, “AND-SplitfP3V2”)
228. InsertNode(V, “AND-JoinfP3V2”)
229. InsertNode(V, “Update Cust. Record”)
230. InsertNode(V, “Send Rejection Letter”)
231. DeleteEdge(V, e7, “Reject Claim”, “Close Claim”)

232. InsertEdge(V, e24, “Reject Claim”, “AND-SplitfP3V2”) (227, 231)
233. InsertEdge(V, e25, “AND-SplitfP3V2”, “Update Cust. Record”) (227, 229)
234. InsertEdge(V, e26, “AND-SplitfP3V2”, “Send Rej. Letter”) (227, 230)
235. InsertEdge(V, e27, “Update Cust. Record”, “AND-JoinfP3V2”) (228, 229)
236. InsertEdge(V, e28, “Send Rej. Letter”, “AND-JoinfP3V2”) (228, 230)
237. InsertEdge(V, e29, “AND-JoinfP3V2”, “Close Claim”) (228, 231)

…
134. InsertNode(V, “XOR-SplitfA2V1”)
135. InsertNode(V, “XOR-JoinfA2V1”)
136. InsertNode(V, “Call Customer”)
137. InsertNode(V, “Send Rejection Letter”)

138. DeleteEdge(V, e7, “Reject Claim”, “Close Claim”)
139. DeleteEdge(V, e8, “Close Claim”, “XOR-JoinfAV1”)

140. InsertEdge(V, e28, “XOR-JoinfA2V1”, “XOR-JoinfAV1”) (135,139)
141. DeleteNode(V, “Close Claim”) (138, 139)
142. InsertEdge(V, e29, “Reject Claim”, “XOR-SplitfA2V1”) (134, 138)
143. InsertEdge(V, e30, “XOR-SplitfA2V1”, “Call Customer”) (134, 136)
144. InsertEdge(V, e31, “XOR-SplitfA2V1”, “Send Rej. Letter”) (134, 137)
145. InsertEdge(V, e32, “Call Customer”, “XOR-JoinfA2V1”) (135, 136)
146. InsertEdge(V, e33, “Send Rej. Letter”, “XOR-JoinfA2V1”) (135, 137)

…
227. InsertNode(V, “AND-SplitfP3V2”)
228. InsertNode(V, “AND-JoinfP3V2”)
229. InsertNode(V, “Update Cust. Record”)
230. InsertNode(V, “Send Rejection Letter”)
231. DeleteEdge(V, e7, “Reject Claim”, “Close Claim”)

232. InsertEdge(V, e24, “Reject Claim”, “AND-SplitfP3V2”) (227, 231)
233. InsertEdge(V, e25, “AND-SplitfP3V2”, “Update Cust. Record”) (227, 229)
234. InsertEdge(V, e26, “AND-SplitfP3V2”, “Send Rej. Letter”) (227, 230)
235. InsertEdge(V, e27, “Upd. Cust. Record”, “AND-JoinfP3V2”) (228, 229)
236. InsertEdge(V, e28, “Send Rej. Letter”, “AND-JoinfP3V2”) (228, 230)
237. InsertEdge(V, e29, “AND-JoinfP3V2, “Close Claim”) (228, 231)

Step 1

Step 2

Step 3

Step 4
Manually connect the process model with two edges

Fig. A.10 Process Merging using Elementary Change Operations

Elementary Change
Operations

Compound Change
Operations

E(V, V1) E(V, V2) C(V, V1) C(V, V2)

of Change Operations 46 37 13 10

of Dependencies 45 36 10 7

of Conflicts 23 3

of Work Units for
Sample Resolution

22 7

Fig. A.11 Evaluation Results of the Case Study

together is not given and requires further computation on the process models. Sec-
ondly, the granularity of elementary change operations is on a too low level resulting
in conflicts between operations those intention remains unclear. Most of the conflicts
are between operations that modify links and these operations require other opera-
tions to be applied before. Overall, it can be concluded that the user intervention
required when compound change operations are used is much less than when using
elementary change operations.

B

Dependency and Conflict Matrices

B.1 Dependency and Conflict Matrices for Compound Change
Operations

Figure B.1 and B.2 show configurations of compound operations that lead to trans-
formation dependencies as introduced in Chapter 7. For a given fragment f , entry(f)
and exit(f) are used to denote the entry or exit nodes of a fragment as described in
Chapter 3. Further, for a given node n or a fragment f , parent(n) or parent(f) de-
notes the parent fragment of n or f .

An entry in the transformation dependency matrix is read as follows: The appli-
cation of an operation in a column is dependent on the prior application of the op-
eration in the row if the conditions specified in the entry are met. For instance, the
operations InsertActivity(V, b, v,w) depends on operation InsertActivity(V, a, x, y) if
v = a & w = y or v = x & w = a. In other words, InsertActivity(V, a, x, y) either
inserts the predecessor (v = a) or the successor (w = a) of the activity b, which is
inserted by the operation InsertActivity(V, b, v,w).

Similarly, configurations of compound operations that lead to syntactic conflicts
are given in Figure B.3.

The entries of the matrices in Figure B.1, B.2, and B.3 have been partially com-
puted using the critical pair analysis of the AGG tool [Taentzer, 2003].

216 B Dependency and Conflict Matrices

T
ra

n
sf

o
rm

at
io

n
D

ep
en

d
en

ci
es

In
se

rt
A

ct
iv

it
y

(V
,b

,v
,w

)
D

el
et

eA
ct

iv
it

y
(V

,b
,v

,w
)

M
o

ve
A

ct
iv

it
y

(V
,b

,o
v,

o
w

,n
v,

n
w

)
In

se
rt

F
ra

g
m

en
t

(V
,f

2,
v,

w
)

D
el

et
eF

ra
g

m
en

t
(V

,f
2,

v,
w

)
M

o
ve

F
ra

g
m

en
t

(V
,f

2,
o

v,
o

w
,n

v,
n

w
)

C
o

n
ve

rt
F

ra
g

m
en

t
(V

,f
2,

f2
c,

v,
w

)

In
se

rt
A

ct
iv

it
y

(V
,a

,x
,y

)
[I

A
(a

),
 I
A

(b
)]

:

(v
 =

 a
 &

 w
 =

 y
)

|

(v
 =

 x
 &

 w
 =

 a
)

[I
A

(a
),

 D
A

(b
)]

:

(b
 =

 x
 &

 w
 =

 a
)

|

(v
 =

 a
 &

 b
 =

 y
)

[I
A

(a
),

 M
A

(b
)]

:

(n
v

=
 x

 &
 n

w
=

 a
)

|

(n
v

=
 a

 &
 n

w
=

y
)

|

(o
v

=
 a

 &
 b

 =
 y

)
|

(b
 =

 x
 &

 o
w

=
 a

)

[I
A

(a
),

IF
(f

2
)]

:

(v
 =

 a
 &

 w
 =

 y
)

|

(v
 =

 x
 &

 w
 =

 a
)

[I
A

(a
),

 D
F

(f
2

)]
:

(v
 =

 a
 &

 e
n

tr
y
(f

2
)

=
 y

)
|

(e
x
it
(f

2
)

=
 x

 &
 w

 =
 a

)

[I
A

(a
),

 M
F

(f
2

)]
:

(n
v

=
 x

 &
 n

w
=

 a
)

|

(n
v

=
 a

 &
 n

w
=

y
)

|

(o
v

=
 a

 &
 e

n
tr

y
(f

2
)

=
 y

)
|

(e
x
it
(f

2
)

=
 x

 &
 o

w
=

 a
)

[I
A

(a
),

C
F

(f
2

)]
:

(v
 =

 a
 &

 e
n

tr
y
(f

2
)

=
 w

)
|

(e
x
it
(f

2
)

=
 x

 &
 w

 =
 a

)

D
el

et
eA

ct
iv

it
y

(V
,a

,x
,y

)
[D

A
(a

),
 I

A
(b

)]
:

(v
 =

 x
 &

 w
 =

 y
)

[D
A

(a
),

 D
A

(b
)]

:

(v
 =

 x
 &

 b
 =

 y
)

|

(b
 =

 x
 &

 w
 =

 y
)

[D
A

(a
),

 M
A

(b
)]

:

(n
v

=
 x

 &
 n

w
=

 y
)

|

(o
v

=
 x

 &
 b

 =
 y

)
|

(b
 =

 x
 &

 o
w

=
 y

)

[D
A

(a
),

 I
F

(f
2

)]
:

(v
 =

 x
 &

 w
 =

 y
)

[D
A

(a
),

 D
F

(f
2

)]
:

(v
 =

 x
 &

 e
n

tr
y
(f

2
)

=
 y

)
|

(e
x
it
(f

2
)

=
 x

 &
 w

=
 y

)
|

(e
n
tr

y
(f

2
)

=
 y

 &

e
x
it
(f

2
)

=
 y

)

[D
A

(a
),

 M
F

(f
2

)]
:

(n
v

=
 x

 &
 n

w
=

 y
)

|

(o
v

=
 x

 &
 e

n
tr

y
(f

2
)

=
 y

)
|

(e
x
it
(f

2
)

=
 x

 &
 o

w
=

 y
)

[D
A

(a
),

 C
F

(f
2

)]
:

(v
 =

 x
 &

 e
n

tr
y
(f

2
)

=
 y

)
|

(e
x
it
(f

2
)

=
 x

 &
 w

 =
y
)

|

(f
2
 =

 p
a
re

n
t(

x
)

&

f2
 =

 p
a
re

n
t(

y
))

M
o

ve
A

ct
iv

it
y

(V
,a

,o
x,

o
y,

n
x,

n
y)

[M
A

(a
),

 I
A

(b
)]

:

(v
 =

 o
x
 &

 w
 =

 o
y
)

|

(v
 =

 a
 &

 w
 =

 n
y
)

|

(v
 =

 n
x

&
 w

 =
 a

)

[M
A

(a
),

 D
A

(b
)]

:

(v
 =

 o
x
 &

 b
 =

 o
y
)

|

(b
 =

 o
x
 &

 w
 =

 o
y
)

|

(v
 =

 n
x

&
 w

 =
 a

)
|

(v
 =

 a
 &

 w
 =

 n
y
)

[M
A

(a
),

 M
A

(b
)]

:

(n
v

=
 o

x
 &

 n
w

=
 o

y
)

|

(o
v

=
 o

x
 &

 b
 =

 o
y
)

|

(b
 =

 o
x
 &

 o
w

=
 o

y
)

|

(o
v

=
 a

 &
 b

 =
 n

x
)

|

(b
 =

 n
x

&
 o

w
=

 a
)

|

(n
v

=
 n

x
&

 n
w

=
 a

)
|

(n
v

=
 a

 &
 n

w
=

 n
y
)

[M
A

(a
),

 I
F

(f
2

)]
:

(v
 =

 o
x
 &

 w
 =

 o
y
)

|

(v
 =

 a
 &

 w
 =

 n
y
)

|

(v
 =

 n
x

&
 w

 =
 a

)

[M
A

(a
),

 D
F

(f
2

)]
:

(v
 =

 o
x
 &

 e
n
tr

y
(f

2
)

=
 o

y
)

|

(e
x
it
(f

2
)

=
 o

x
 &

 w
 =

 o
y
)

|

(v
 =

 a
 &

 e
n
tr

y
(f

2
)

=
 n

y
)

|

(e
x
it
(f

2
)

=
 n

x
&

 w
 =

 a
)

|

(e
n
tr

y
(f

2
)

=
 o

x
 &

 e
x
it
(f

2
)

=
 o

y
)

[M
A

(a
),

 M
F

(f
2

)]
:

(n
v

=
 o

x
 &

 n
w

=
 o

y
)

|

(o
v

=
 o

x
 &

 e
n
tr

y
(f

2
)

=
 o

y
)

|

(e
x
it
(f

2
)

=
 o

x
 &

 o
w

=
 o

y
)

|

(o
v

=
 a

 &
 e

n
tr

y
(f

2
)

=
 n

x
)

|

(e
x
it
(f

2
)

=
 n

x
&

 o
w

=
 a

)
|

(n
v

=
 n

x
&

 n
w

=
 a

)
|

(n
v

=
 a

 &
 n

w
=

 n
y
)

[M
A

(a
),

 C
F

(f
2

)]
:

(v
 =

 o
x
 &

 e
n
tr

y
(f

2
)

=
 o

y
)

|

(e
x
it
(f

2
)

=
 o

x
 &

 w
 =

 o
y
)

|

(v
 =

 a
 &

 e
n
tr

y
(f

2
)

=
 n

y
)

|

(e
x
it
(f

2
)

=
 n

x
&

 w
 =

 a
)

|

(f
2
 =

 p
a
re

n
t(

o
x
)

&

f2
 =

 p
a
re

n
t(

o
y
))

F
ig

.B
.1

T
ra

ns
fo

rm
at

io
n

D
ep

en
de

nc
ie

s
of

C
om

po
un

d
C

ha
ng

e
O

pe
ra

ti
on

s
(P

ar
t1
/2

)

B.1 Dependency and Conflict Matrices for Compound Change Operations 217

T
ra

n
sf

o
rm

at
io

n
D

ep
en

d
en

ci
es

In
se

rt
A

ct
iv

it
y

(V
,b

,v
,w

)
D

el
et

eA
ct

iv
it

y
(V

,b
,v

,w
)

M
o

ve
A

ct
iv

it
y

(V
,b

,o
v,

o
w

,n
v,

n
w

)
In

se
rt

F
ra

g
m

en
t

(V
,f

2,
v,

w
)

D
el

et
eF

ra
g

m
en

t
(V

,f
2,

v,
w

)
M

o
ve

F
ra

g
m

en
t

(V
,f

2,
o

v,
o

w
,n

v,
n

w
)

C
o

n
ve

rt
F

ra
g

m
en

t
(V

,f
2,

f2
c,

v,
w

)

In
se

rt
F

ra
g

m
en

t
(V

,f
1,

x,
y)

[I

F
(f

1
),

 I
A

(b
)]

:

(v
 =

 x
 &

 w
 =

 e
n

tr
y
(f

1
)

|

(v
 =

 e
x
it
(f

1
)

&
 w

 =
 y

)
|

(v
 =

 e
n

tr
y
(f

1
)

&

w
 =

 e
x
it
(f

1
))

[I
F

(f
1

),
 D

A
(b

)]
:

(b
 =

 x
 &

 w
 =

 e
n

tr
y
(f

1
))

 |

(v
 =

 e
x
it
(f

1
)

&
 b

 =
 y

)

[I
F

(f
1

),
 M

A
(b

)]
:

o
v

=
 e

x
it
(f

1
)

|

o
w

=
 e

n
tr

y
(f

1
)

|

n
v

=
 e

n
tr

y
(f

1
)

|

n
v

=
 e

x
it
(f

1
)

|

n
w

=
 e

n
tr

y
(f

1
)

|

n
w

=
 e

x
it
(f

1
)

[I
F

(f
1

),
 I
F

(f
2

)]
:

(v
 =

 x
 &

 w
 =

 e
n

tr
y
(f

1
)

|

(v
 =

 e
x
it
(f

1
)

&
 w

 =
 y

)
|

(v
 =

 e
n

tr
y
(f

1
)

&
 w

 =

e
x
it
(f

1
))

[I
F

(f
1

),
 D

F
(f

2
)]

:

(v
 =

 e
x
it
(f

1
)

&
 e

n
tr

y
(f

2
)

=
 y

)
|

(e
x
it
(f

2
)

=
 x

 &
 w

 =
 e

n
tr

y
(f

1
))

[I
F

(f
1

),
 M

F
(f

2
)]

:

(o
v

=
 e

x
it
(f

1
)

&
 e

n
tr

y
(f

2
)

=
 y

)
|

(e
x
it
(f

2
)

=
 x

 &
 o

w
=

 e
n

tr
y
(f

1
))

 |

(n
v

=
 x

 &
 n

w
=

 e
n
tr

y
(f

1
))

 |

(n
v

=
 e

x
it
(f

1
)

&
 n

w
=

 y
)

[I
F

(f
1

),
C

F
(f

2
)]

:

(v
 =

 e
x
it
(f

1
)

&
 e

n
tr

y
(f

2
)

=
 y

)
|

(e
x
it
(f

2
)

=
 x

 &
 w

 =
 e

n
tr

y
(f

1
))

D
el

et
eF

ra
g

m
en

t
(V

,f
1,

x,
y)

[D
F

(f
1

),
 I
A

(f
2

)]
:

(v
 =

 x
 &

 w
 =

 y
)

[D
F

(f
1
),

 D
A

(b
)]

:

(v
 =

 x
 &

 b
 =

 y
)

|

(b
 =

 x
 &

 w
 =

 y
)

[D
F

(f
1

),
 M

A
(b

)]
:

(o
v

=
 x

 &
 b

 =
 y

)
|

(b
 =

 x
 &

 o
w

=
 y

)
|

(n
v

=
 x

 &
 n

w
=

 y
)

[D
F

(f
1

),
 I
F

(f
2

)]
:

(v
 =

 x
 &

 w
 =

 y
)

[D
F

(f
1

),
 D

F
(f

2
)]

:

(v
 =

 x
 &

 e
n

tr
y
(f

2
)

=
 y

)
|

(e
x
it
(f

2
)

=
 x

 &
 w

 =
 y

)

[D
F

(f
1

),
 M

F
(f

2
)]

:

(o
v

=
 x

 &
 e

n
tr

y
(f

2
)

=
 y

)
|

(e
x
it
(f

2
)

=
 x

 &
 o

w
=

 y
)

|

(n
v

=
 x

 &
 n

w
=

 y
)

[D
F

(f
1

),
 C

F
(f

2
)]

:

(v
 =

 x
 &

 e
n

tr
y
(f

2
)

=
 y

)
|

(e
x
it
(f

2
)

=
 x

 &
 w

 =
 y

)
|

(f
2
 =

 p
a
re

n
t(

x
)

&

f2
 =

 p
a
re

n
t

(y
))

M
o

ve
F

ra
g

m
en

t
(V

,f
1,

o
x,

o
y,

n
x,

n
y)

[M
F

(f
1

),
 I
A

(b
)]

:

(v
 =

 o
x
 &

 w
 =

 o
y
)

|

(v
 =

 n
x

&
 w

 =
 e

n
tr

y
(f

1
))

 |

(v
 =

 e
x
it
(f

1
)

&
 w

 =
 n

y
)

[M
F

(f
1

),
 D

A
(b

)]
:

(v
 =

 o
x
 &

 b
 =

 o
y
)

|

(b
 =

 o
x
 &

 w
 =

 o
y
)

|

(b
 =

 n
x

&
 w

 =
 e

n
tr

y
(f

1
))

 |

(v
 =

 e
x
it
(f

1
)

&
 b

 =
 n

y
)

[M
F

(f
1

),
 M

A
(b

)]
:

(n
v

=
 o

x
 &

 n
w

=
 o

y
)

|

(o
v

=
 o

x
 &

 b
 =

 o
y
)

|

(b
 =

 o
x
 &

 o
w

=
 o

y
)

|

(o
v

=
 e

x
it
(f

1
)

&
 b

 =
 n

y
)

|

(b
 =

 n
x

&
 o

w
=

 e
n
tr

y
(f

1
))

 |

(n
v

=
 n

x
&

 n
w

=
 e

n
tr

y
(f

1
))

 |

(n
v

=
 e

x
it
(f

1
)

&
 n

w
=

 n
y
)

[M
F

(f
1

),
 I
F

(f
2

)]
:

(v
 =

 o
x
 &

 w
 =

 o
y
)

|

(v
 =

 n
x

&
 w

 =
 e

n
tr

y
(f

1
))

 |

(v
 =

 e
x
it
(f

1
)

&
 w

 =
 n

y
)

[M
F

(f
1

),
 D

F
(f

2
)]

:

(v
 =

 o
x
 &

 e
n
tr

y
(f

2
)

=
 o

y
)

|

(e
x
it
(f

2
)

=
 o

x
 &

 w
 =

 o
y
)

|

(e
x
it
(f

2
)

=
 n

x
&

 w
 =

 e
n

tr
y
(f

1
))

 |

(v
 =

 e
x
it
(f

1
)

&
 e

n
tr

y
(f

2
)

=
 n

y
)

[M
F

(f
1

),
 M

F
(f

2
)]

:

(n
v

=
 o

x
 &

 n
w

=
 o

y
)

|

(o
v

=
 o

x
 &

 e
n
tr

y
(f

2
)

=
 o

y
)

|

(e
x
it
(f

2
)

=
 o

x
 &

 o
w

=
 o

y
)

|

(o
v

=
 e

x
it
(f

1
)

&
 e

n
tr

y
(f

2
)

=
 n

y
)

|

(e
x
it
(f

2
)

=
 n

x
&

 o
w

=
 e

n
tr

y
(f

1
))

 |

(n
v

=
 n

x
&

 n
w

=
 e

n
tr

y
(f

1
))

 |

(n
v

=
 e

x
it
(f

1
)

&
 n

w
=

 n
y
)

[M
F

(f
1

),
 C

F
(f

2
)]

:

(v
 =

 o
x
 &

 e
n
tr

y
(f

2
)

=
 o

y
)

|

(e
x
it
(f

2
)

=
 o

x
 &

 w
 =

 o
y
)

|

(v
 =

 e
x
it
(f

1
)

&
 e

n
tr

y
(f

2
)

=
 n

y
)

|

(e
x
it
(f

2
)

=
 n

x
&

 w
 =

 e
n

tr
y
(f

1
))

 |

(f
2
 =

 p
a
re

n
t(

o
x
)

&

f2
 =

 p
a
re

n
t(

o
y
))

C
o

n
ve

rt
F

ra
g

m
en

t
(V

,f
1,

f1
c,

x,
y)

[C
F

(f
1

),
 I
A

(b
)]

:

(v
 =

 x
 &

 w
 =

 e
n

tr
y
(f

1
c
))

 |

(v
 =

 e
x
it
(f

1
c
)

&
 w

 =
 y

)
|

(p
a
re

n
t(

v
)

=
 f
1
c
 &

p
a
re

n
t(

w
)

=
 f
1
c
)

[C
F

(f
1
),

 D
A

(b
)]

:

(v
 =

 e
x
it
(f

1
c
)

&
 b

 =
 y

)
|

(b
 =

 x
 &

 w
 =

 e
n

tr
y
(f

1
c
))

[C
F

(f
1

),
 M

A
(b

)]
:

(n
v

=
 x

 &
 n

w
=

 e
n
tr

y
(f

1
c
))

 |

(n
v

=
 e

x
it
(f

1
c
)

&
 n

w
=

y
)

|

(o
v

=
 e

x
it
(f

1
c
)

&
 b

 =
 y

)
|

(b
 =

 x
 &

 o
w

=
 e

n
tr

y
(f

1
c
))

 |

(p
a
re

n
t(

n
v
)

=
 f
1
c
 &

p
a
re

n
t(

n
w

)
=

 f
1
c
)

[C
F

(f
1

),
 I
F

(f
2

)]
:

(v
 =

 x
 &

 w
 =

 e
n

tr
y
(f

1
c
))

 |

(v
 =

 e
x
it
(f

1
c
)

&
 w

 =
 y

)
|

(p
a
re

n
t(

v
)

=
 f
1
c
 &

p
a
re

n
t(

w
)

=
 f
1
c
)

[C
F

(f
1

),
 D

F
(f

2
)]

:

(v
 =

 e
x
it
(f

1
c
)

&
 e

n
tr

y
(f

2
)

=
 y

)
|

(e
x
it
(f

2
)

=
 x

 &
 w

 =
 e

n
tr

y
(f

1
c
))

[C
F

(f
1

),
 M

F
(f

2
)]

:

(n
v

=
 x

 &
 n

w
=

 e
n
tr

y
(f

1
c
))

 |

(n
v

=
 e

x
it
(f

1
c
)

&
 n

w
=

y
)

|

(o
v

=
 e

x
it
(f

1
c
)

&
 e

n
tr

y
(f

2
)

=
 y

)
|

(e
x
it
(f

2
)

=
 x

 &
 o

w
=

 e
n

tr
y
(f

1
c
))

 |

(p
a
re

n
t(

n
v
)

=
 f
1
c
 &

p
a
re

n
t(

n
w

)
=

 f
1
c
)

[C
F

(f
1

),
 C

F
(f

2
)]

:

(v
 =

 e
n

tr
y
(f

1
c
)

&
 e

n
tr

y
(f

2
)

=
 y

)
|

(e
x
it
(f

2
)

=
 x

 &
 w

 =
 e

n
tr

y
(f

1
c
))

F
ig

.B
.2

T
ra

ns
fo

rm
at

io
n

D
ep

en
de

nc
ie

s
of

C
om

po
un

d
C

ha
ng

e
O

pe
ra

ti
on

s
(P

ar
t2
/2

)

218 B Dependency and Conflict Matrices

S
yn

ta
ct

ic
C

o
n

fl
ic

ts
In

se
rt

A
ct

iv
it

y
(V

,b
,v

,w
)

D
el

et
eA

ct
iv

it
y

(V
,b

,v
,w

)
M

o
ve

A
ct

iv
it

y
(V

,b
,o

v,
o

w
,n

v,
n

w
)

In
se

rt
F

ra
g

m
en

t
(V

,f
2,

v,
w

)
D

el
et

eF
ra

g
m

en
t

(V
,f

2,
v,

w
)

M
o

ve
F

ra
g

m
en

t
(V

,f
2,

o
v,

o
w

,n
v,

n
w

)
C

o
n

ve
rt

F
ra

g
m

en
t

(V
,f

2,
f2

c,
v,

w
)

In
se

rt
A

ct
iv

it
y

(V
,a

,x
,y

)
(b

 a

 &
 v

 =
 x

 &
 w

 =
 y

)
D

iff
er

en
t e

le
m

en
ts

 a
re

in

se
rt

ed
 a

t s
am

e
po

si
tio

n

(n
v

=
x

&
 n

w
=

y)
a

is
 in

se
rt

ed
 a

nd
 b

is
m

ov
ed

 to
 s

am
e

po
si

tio
n

(v
 =

 x
 &

 w
 =

 y
)

a
an

d
f2

ar
e

in
se

rt
ed

 a
t s

am
e

po
si

tio
n

f2
 =

 p
ar

en
t(a

)
a

is
 in

se
rt

ed
 in

to

de
le

te
d

fr
ag

m
en

t
f2

(n
v

=
x

&
 n

w
=

y)
a

is
 in

se
rt

ed
 a

nd
 f

2
is

m
ov

ed
 to

 s
am

e
po

si
tio

n

f2
 =

 p
ar

en
t(x

) &
f2

 =
 p

ar
en

t(y
)

x
an

d
y

m
ay

 b
e

de
le

te
d

du
rin

g
th

e
co

nv
er

si
on

 o
f

fr
ag

m
en

tf
2

D
el

et
eA

ct
iv

it
y

(V
,a

,x
,y

)

M
o

ve
A

ct
iv

it
y

(V
,a

,o
x,

o
y,

n
x,

n
y)

(v
 =

 n
x

&
 w

 =
 n

y)
b

is
 in

se
rt

ed
 a

nd
 a

is
m

ov
ed

 to
 s

am
e

po
si

tio
n

(n
v

=
nx

&
 n

w
=

ny
)

a
an

d
b

ar
e

m
ov

ed

to
 s

am
e

po
si

tio
n

(v
 =

 n
x

&
 w

 =
 n

y)
f2

is
 in

se
rt

ed
 a

nd

a
is

 m
ov

ed
 to

sa

m
e

po
si

tio
n

f2
 =

 p
ar

en
t(a

)
a

is
 m

ov
ed

 in
to

de

le
te

d
fr

ag
m

en
t

f2

(n
v

=
nx

&
 n

w
=

ny
)

a
an

d
f2

ar
e

m
ov

ed

to
 s

am
e

po
si

tio
n

f2
 =

 p
ar

en
t(n

x)
 &

f2
 =

 p
ar

en
t(n

y)
n

x
an

d
n

y
m

ay
 b

e
de

le
te

d
du

rin
g

th
e

co
nv

er
si

on
 o

f f
ra

gm
en

t f
2

In
se

rt
F

ra
g

m
en

t
(V

,f
1,

x,
y)

(v

 =
 x

 &
 w

 =
 y

)
D

iff
er

en
t e

le
m

en
ts

 (
f1

an
d

b
)

ar
e

in
se

rt
ed

 a
t

sa
m

e
po

si
tio

n

(n
v

=
x

&
 n

w
=

y)
f1

is
 in

se
rt

ed
 a

nd
 b

is
 m

ov
ed

 to
 s

am
e

po
si

tio
n

(v
 =

 x
 &

 w
 =

 y
)

f1
an

d
f2

ar
e

in
se

rt
ed

 a
t s

am
e

po
si

tio
n

f2
 =

 p
ar

en
t(f

1)
f1

is
 in

se
rt

ed
 in

to

de
le

te
d

fr
ag

m
en

t
f2

(n
v

=
x

&
 n

w
=

y)
f1

is
 in

se
rt

ed
 a

nd
 f

2
is

 m
ov

ed
 to

 s
am

e
po

si
tio

n

f2
 =

 p
ar

en
t(x

) &
f2

 =
 p

ar
en

t(y
)

x
an

d
y

m
ay

 b
e

de
le

te
d

du
rin

g
th

e
co

nv
er

si
on

 o
f

fr
ag

m
en

tf
2

D
el

et
eF

ra
g

m
en

t
(V

,f
1,

x,
y)

pa
re

nt
(b

) =
 f1

b
is

 in
se

rt
ed

 in
to

 d
el

et
ed

fr

ag
m

en
tf

1

pa
re

nt
(b

) =
 f1

b
is

 m
ov

ed
 in

to

de
le

te
d

fr
ag

m
en

t f
1

pa
re

nt
(f2

) =
 f1

f2
is

 in
se

rt
ed

 in
to

de

le
te

d
fr

ag
m

en
t

f1

pa
re

nt
(n

v)
 =

 f1
 &

pa
re

nt
(n

w
) =

 f1
f2

is
 m

ov
ed

 in
to

de

le
te

d
fr

ag
m

en
t f

1

M
o

ve
F

ra
g

m
en

t
(V

,f
1,

o
x,

o
y,

n
x,

n
y)

(v
 =

 n
x

&
 w

 =
 n

y)
b

is
 in

se
rt

ed
 a

nd
 f

1
is

m
ov

ed
 to

 s
am

e
po

si
tio

n

(n
v

=
nx

&
 n

w
=

ny
)

b
an

d
f1

ar
e

m
ov

ed

to
 s

am
e

po
si

tio
n

(n
v

=
x

&
 n

w
=

y)
f2

is
 in

se
rt

ed
 a

nd

f1
is

 m
ov

ed
 to

sa

m
e

po
si

tio
n

f2
 =

 p
ar

en
t(f

1)
f1

is
 m

ov
ed

 in
to

de

le
te

d
fr

ag
m

en
t

f2

(n
v

=
nx

&
 n

w
=

ny
)

f1
an

d
f2

ar
e

m
ov

ed

to
 s

am
e

po
si

tio
n

f2
 =

 p
ar

en
t(n

x)
 &

f2

 =
 p

ar
en

t(n
y)

n
x

an
d

n
y

m
ay

 b
e

de
le

te
d

du
rin

g
th

e
co

nv
er

si
on

 o
f f

ra
gm

en
t f

2

C
o

n
ve

rt
F

ra
g

m
en

t
(V

,f
1,

f1
c,

x,
y)

pa
re

nt
(v

) =
 f1

 &
pa

re
nt

(w
) =

 f1
v

an
d

w
m

ay
 b

e
de

le
te

d
du

rin
g

th
e

co
nv

er
si

on
 o

f
fr

ag
m

en
tf

1

pa
re

nt
(n

v)
 =

 f1
 &

pa
re

nt
(n

w
) =

 f1
n

v
an

d
n

w
m

ay
 b

e
de

le
te

d
du

rin
g

th
e

co
nv

er
si

on
 o

f
fr

ag
m

en
tf

1

pa
re

nt
(v

) =
 f1

 &

pa
re

nt
(w

) =
 f1

v
an

d
w

m
ay

 b
e

de
le

te
d

du
rin

g
th

e
co

nv
er

si
on

 o
f

fr
ag

m
en

tf
1

pa
re

nt
(n

v)
 =

 f1
 &

pa

re
nt

(n
w

) =
 f1

n
v

an
d

n
w

m
ay

 b
e

de
le

te
d

du
rin

g
th

e
co

nv
er

si
on

 o
f

fr
ag

m
en

tf
1

(f2
 =

 f1
 &

 v
 =

 x
 &

 w
 =

 y
)

f1
an

d
f2

m
ay

 b
e

co
nv

er
te

d
in

to

sy
nt

ac
tic

al
ly

 d
iff

er
en

t
fra

gm
en

ts

F
ig

.B
.3

S
yn

ta
ct

ic
C

on
fl

ic
ts

us
in

g
D

yn
am

ic
S

pe
ci

fi
ca

ti
on

of
C

om
po

un
d

C
ha

ng
e

O
pe

ra
ti

on
s

	Foreword
	Acknowledgments
	Abstract
	Contents
	Introduction
	1.1 Motivation and Problem Statement
	1.2 Solution Overview and Research Contribution
	1.3 Publication Overview
	1.4 Structure of the Book

	Background
	2.1 Models in Software Engineering
	2.2 Business Process Modeling
	2.2.1 Overview of Business Process Modeling Languages
	2.2.2 BPMN in Detail
	2.2.3 Semantics of Process Models

	2.3 Business Processes in Model-Based Development
	2.4 State of the Art in Model Versioning
	2.4.1 Classification of Model Versioning
	2.4.2 Overview of Existing Approaches
	2.4.3 Evaluation

	2.5 Summary and Discussion

	Intermediate Representation
	3.1 Options for an Intermediate Representation
	3.2 Requirements for an Essential Intermediate Representation
	3.3 Intermediate Representation for Business Process Models
	3.3.1 Syntax of the IR
	3.3.2 Semantics of the IR

	3.4 Decomposition into Fragments
	3.5 Abstraction of BPMN to the Intermediate Representation
	3.6 Summary and Discussion

	Matching
	4.1 Requirements for Process Model Matching
	4.2 Evaluation of Existing Matching Approaches for Process Model Matching
	4.2.1 Identity-Based Matching Approaches
	4.2.2 Similarity-Based Matching Approaches
	4.2.3 Summary

	4.3 Data Structure for Model Matching
	4.4 Matching in Versioning Scenarios
	4.4.1 Overview
	4.4.2 Computation of Partial Mappings
	4.4.3 Completion of the Partial Mappings
	4.4.4 Derivation of the MappingM(V1, V2)

	4.5 Summary and Discussion

	Difference Representation
	5.1 Requirements for Difference Representation
	5.2 Difference Representation Based on Elementary Change Operations
	5.2.1 Elementary Change Operations
	5.2.2 Completeness of Elementary Change Operations
	5.2.3 An Example of an Elementary Difference Model
	5.2.4 Discussion

	5.3 Difference Representation Based on Compound Change Operations
	5.3.1 Compound Change Operations
	5.3.2 Completeness of Compound Change Operations
	5.3.3 A Change Log with Compound Change Operations
	5.3.4 Discussion

	5.4 Summary and Discussion

	Difference Detection
	6.1 Requirements for Difference Detection
	6.2 Approach to Difference Detection
	6.2.1 Approach Overview
	6.2.2 Step 1: Detection of Inserted Model Elements
	6.2.3 Step 2: Detection of Deleted Model Elements
	6.2.4 Step 3: Detection of Moved Model Elements
	6.2.5 Step 4: Detection of Converted Fragments
	6.2.6 Summary

	6.3 Hierarchical Change Log
	6.4 Position Parameters of Compound Change Operations
	6.5 Summary and Discussion

	Dependency Analysis
	7.1 Requirements for Dependency Analysis
	7.2 Transformation Dependent Compound Change Operations
	7.2.1 Approach Overview
	7.2.2 Compound Change Operations and Model Transformation Rules
	7.2.3 Formalization of Compound Change Operation Types
	7.2.4 Transformation Dependencies
	7.2.5 Discussion

	7.3 J-PST Dependent Compound Change Operations
	7.3.1 Dynamic Specification
	7.3.2 J-PST Dependencies
	7.3.3 Discussion

	7.4 Summary and Discussion

	Equivalence Analysis
	8.1 The Notion of Equivalence
	8.1.1 Existing Approaches to Equivalence Analysis of Process Models
	8.1.2 Overview of Our Approach

	8.2 Process Model Terms
	8.3 Term Rewriting System for Process Model Terms
	8.3.1 Term Rewriting System
	8.3.2 Functional Behavior
	8.3.3 Equivalence of Process Models and Fragments

	8.4 Detection of Semantically Equivalent Fragments
	8.5 Summary and Discussion

	Conflict Analysis
	9.1 Conflicts between Change Operations
	9.2 Types of Conflicts
	9.2.1 Syntactic Conflicts
	9.2.2 Semantic Conflicts

	9.3 Method for Precise Conflict Detection
	9.3.1 Conflict Detection of Independent Change Operations
	9.3.2 Conflict Detection of Dependent Change Operations

	9.4 Summary and Discussion

	Process Model Merging
	10.1 Merging Overview
	10.2 Translation of IR Compound Change Operations into Language-Specific Compound Change Operations
	10.3 Applying Non-conflicting Compound Change Operations
	10.3.1 Iterative Application of Change Operations
	10.3.2 Automatic Application of Change Operations

	10.4 Applying Conflicting Compound Change Operations
	10.4.1 Strategies for Conflict Resolution
	10.4.2 Method for Conflict Resolution

	10.5 Summary and Discussion

	Tool Support
	11.1 Implementation Platform
	11.2 Overview of the Process Merging Solution
	11.2.1 Architectural Overview
	11.2.2 Reconstruction of a Hierarchical Change Log
	11.2.3 Merging of Process Models
	11.2.4 Compare and Merge Framework of the IBM WebSphere Business Modeler

	11.3 Summary and Discussion

	Conclusion
	12.1 Contribution Summary
	12.2 Outlook on Future Work
	12.3 Final Remarks

	References
	Evaluation Case Study
	A.1 Scenario of the Case Study
	A.2 Difference and Conflict Resolution Using Compound Change Operations
	A.3 Difference and Conflict Resolution Using Elementary Change Operations
	A.4 Summary and Discussion

	Dependency and Conflict Matrices
	B.1 Dependency and Conflict Matrices for Compound Change Operations

